Mathematics for Biology MAT1142

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Trigonometry

Department of Mathematics University of Ruhuna Mathematics for Biology

- Trigonometry is the study of the relations between the sides and angles of triangles.
- The word "trigonometry" is derived from the Greek words trigono, meaning "triangle", and metro, meaning "measure".

- (a) An angle is **acute angle** if it is between 0°and 90°.
- (b) An angle is a **right angle** if it equals 90°.
- (c) An angle is **obtuse angle** if it is between 90° and 180°.
- (d) An angle is a **straight angle** if it equals 180°.

Right triangle trigonometry

- If one of the angles is a right angle, then it is calld right triangle.
- In a right triangle, the side opposite the right angle is called the **hypotenuse**.
- The other two sides are called its legs.

Right triangle trigonometry Cont...

- ▶ In Figure the right angle is C.
- The hypotenuse is the line segment \overline{AB} , which has length c.
- \overline{BC} and \overline{AC} are the legs, with lengths *a* and *b*, respectively.

One revolution is 360°, and is also 2π radians. Thus, due to linear proportionality of the two scales, 1°to radians is:

$$360^{\circ} = 2\pi \text{ rad}$$
$$1^{\circ} = \frac{2\pi}{360^{\circ}} \text{ rad}$$
$$1^{\circ} = \frac{\pi}{180^{\circ}} \text{ rad}$$

Degrees versus radians

- The square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the lengths of its legs.
- By knowing the lengths of two sides of a right triangle, the length of the third side can be determined by using the Pythagorean Theorem.
- Thus, if a right triangle has a hypotenuse of length c and legs of lengths a and b, as in Figure, then the Pythagorean Theorem says:

$$\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2.$$

A 17 ft ladder leaning against a wall has its foot 8 ft from the base of the wall. At what height is the top of the ladder touching the wall?

Trigonometric functions of an acute angle

- ► ABC is right triangle with the right angle at C and with lengths a, b, and c, as in the Figure.
- ► For the acute angle A, call the leg BC its opposite side, and call the leg AC its adjacent side.
- The **hypotenuse** of the triangle is the side \overline{AB} .
- ► We can define the six **trigonometric functions** of *A* as shown in next table.

Trigonometric functions of an acute angle

Table of trigonometric functions

Name of function	Abbreviation		Definition		
sine A	$\sin A$	=	$\frac{\text{opposite side}}{\text{hypotenuse}}$	=	$\frac{a}{c}$
$\operatorname{cosine} A$	$\cos A$	=	$\frac{\text{adjacent side}}{\text{hypotenuse}}$	=	$\frac{b}{c}$
angent A	an A	=	$rac{ ext{opposite side}}{ ext{adjacent side}}$	=	$\frac{a}{b}$
$\operatorname{cosecant} A$	$\csc A$	=	hypotenuse opposite side	=	$\frac{c}{a}$
$\operatorname{secant} A$	$\sec A$	=	$\frac{\text{hypotenuse}}{\text{adjacent side}}$	=	$\frac{c}{b}$
$\operatorname{cotangent} A$	$\cot A$	=	adjacent side opposite side	=	$\frac{b}{a}$

- 1. A is an acute angle such that $\sin A = 3/5$. Find the values of the other trigonometric functions of A.
- 2. A is an acute angle such that $\tan A = 1/2$. Find the values of the other trigonometric functions of A.

Basic trigonometric identities

- If equation is true for all angles θ for which both sides of the equation is defined, then it is called an identity.
- Trigonometric identities are identities involving the trigonometric functions.
- These identities are often used to simplify complicated expressions or equations.

$$\csc A = \frac{1}{\sin A} \qquad \sec A = \frac{1}{\cos A} \qquad \cot A = \frac{1}{\tan A}$$
$$\sin A = \frac{1}{\csc A} \qquad \cos A = \frac{1}{\sec A} \qquad \tan A = \frac{1}{\cot A}$$

Result 4

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

$$\sin^2 A + \cos^2 A = \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2$$

$$= \frac{a^2 + b^2}{c^2}$$

$$c^2 = a^2 + b^2 \text{ (By Pythagorean Theorem)}$$

$$\sin^2 A + \cos^2 A = \frac{c^2}{c^2}$$

$$\sin^2 A + \cos^2 A = 1$$

Department of Mathematics University of Ruhuna

<u>Mathematics</u> for Biology

$$\frac{\sin^2 A + \cos^2 A}{\cos^2 A} = 1$$

$$\frac{\sin^2 A}{\cos^2 A} + \frac{\cos^2 A}{\cos^2 A} = \frac{1}{\cos^2 A} \text{ (dividing by } \cos^2 A\text{)}$$

$$\tan^2 A + 1 = \sec^2 A$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\sin^2 A + \cos^2 A = 1$$

$$\frac{\sin^2 A}{\sin^2 A} + \frac{\cos^2 A}{\sin^2 A} = \frac{1}{\sin^2 A} \text{ (dividing by } \sin^2 A)$$

$$1 + \cot^2 A = \csc^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

A table of exact trig values

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined

Identities also exist to relate the value of a trigonometric function at a given angle to the value of that function at the opposite of the given angle.

Negative angle identities Examples

(i)
$$\sin(-30^{\circ}) = -\sin 30^{\circ} = -1/2$$

(ii) $\cos(-45^{\circ}) = \cos 45^{\circ} = 1/\sqrt{2}$
(iii) $\tan(-60^{\circ}) = -\tan 60^{\circ} = -\sqrt{3}$
(iv) $\tan(-\pi/3) = -\tan \pi/3 = -\sqrt{3}$
(v) $\cos(-\pi/3) = \cos(\pi/3) = \frac{1}{2}$

- In the proof of an identity we should strat from one side of the given identity and try to obtain the other side.
- It is usually best to start from more complicated side of the identity and atempt to simplify it.
- The sign \equiv is somtimes used for identities.

Proof of identities

Examples

(i)
$$\sqrt{(1 - \sin A)(1 + \sin A)} = \cos A$$

(ii) $\csc \theta \tan \theta = \sec \theta$
(iii) $\frac{1}{\sec^2 \theta} + \frac{1}{\csc^2 \theta} = 1$
(iv) $\cot \theta \sqrt{1 - \cos^2 \theta} = \cos \theta$
(v) $\sin \theta \tan \theta + \cos \theta = \sec \theta$
(vi) $\csc \theta - \sin \theta = \cot \theta \cos \theta$
(vii) $(\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^2 = 2$
(viii) $(\sin \theta + \csc \theta)^2 = \sin^2 \theta + \cot^3 \theta + 3$
(ix) $\cos^4 \theta - \sin^4 \theta + 1 = 2\cos^2 \theta$
(x) $\sec^4 \theta - \sec^2 \theta = \tan^4 \theta + \tan^2 \theta$

Proof of identities Exercise

(i)
$$\cot s + 1 = \csc s (\cos s + \sin s)$$

(ii) $\frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x}$
(iii) $\sec x \sin x = \tan x$
(iv) $\sin x (\csc x - \sin x) = \cos^2 x$
(v) $\sin x \csc x \cos x = \cos x$
(v) $\cot x \sin x \cos x = \cos^2 x$
(vi) $\cot x \sin x \cos x = \cos^2 x$
(vii) $\csc x (\sin x + \tan x) = 1 + \sec x$
(viii) $1 - \frac{\sin x}{\csc x} = \cos^2 x$
(ix) $\frac{\cot x}{\csc x} = \cos x$
(x) $\sec x \csc x = \tan x + \cot x$

Addition formulas for sine and cosine

For the sum of any two angles A and B, we have the addition formulas:

$$sin(A + B) = sin A cos B + cos A sin B$$
$$cos(A + B) = cos A cos B - sin A sin B$$

Addition formulas for sine and cosine

Examples

(i) sin 75°(iii) cos 75°

Subtraction formulas for sine and cosine

For the difference any two angles A and B, we have the subtraction formulas:

$$sin(A - B) = sin A cos B - cos A sin B$$
$$cos(A - B) = cos A cos B + sin A sin B$$

Subtraction formulas for sine and cosine

Examples

(i) cos 15°(ii) sin 15°

Addition formula for tangent

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$
$$= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$
$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}}$$
$$= \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Subtraction formula for tangent

$$\tan(A - B) = \frac{\sin(A - B)}{\cos(A - B)}$$
$$= \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}$$
$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} - \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} + \frac{\sin A \sin B}{\cos A \cos B}}$$
$$= \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Addition and subtraction formulas for tangent $_{\mbox{\sc Example}}$

(i) tan 75°(ii) tan 15°

Given angles A and B such that $\sin A = 4/5$, $\cos A = 3/5$, $\sin B = 12/13$ and $\cos B = 5/13$, find the exact values of followings:

(i) sin(A+B)(ii) cos(A-B)(iii) tan(A+B)

Double-angle formulas

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$an 2 heta = rac{2 an heta}{1- an^2 heta}$$

Double-angle formulas Examples

- 1. Use a double angle identity to find the exact value of $\cos(2\pi/3)$.
- 2. Use a double angle identity to find the exact value of $\sin(2\pi/3)$.
- 3. Use a double angle identity to find the exact value of $\tan(2\pi/3)$.

Thank You

Department of Mathematics University of Ruhuna Mathematics for Biology