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Chapter 5
Section 5.1

The Concept of a PDE
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Introduction

Partial differential equations (PDEs) are used to describe a
large variety of physical phenomena, from fluid flow to
electromagnetic fields, aircraft simulation, and computer
graphics.

A PDE is any equation involving a function of more than
one independent variable and at least one partial
derivative of that function.

Eg:
∂2u
∂x2 +

∂2u
∂y2 = 1,

∂T
∂u

= 3w2 ∂T
∂w
− 5v

∂T
∂v

.
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Definition
First order partial derivatives

The partial derivative of f(x , y) with respect to x is

∂f
∂x

= fx = lim
h→0

f(x + h, y) − f(x , y)
h

.

The partial derivative of f(x , y) with respect to y is

∂f
∂y

= fy = lim
h→0

f(x , y + h) − f(x , y)
h

.
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Definition
Second order partial derivatives

The second order partial derivatives of f(x , y) are:

∂2f
∂x2 = fxx = lim

h→0

fx(x + h, y) − fx(x , y)
h

∂
∂y

(
∂f
∂x

)
=

∂2f
∂y∂x

= fyx = lim
h→0

fx(x , y + h) − fx(x , y)
h

∂2f
∂y2 = fyy = lim

h→0

fy(x , y + h) − fy(x , y)
h

∂

∂x

(
∂f
∂y

)
=

∂2f
∂x∂y

= fxy = lim
h→0

fy(x + h, y) − fy(x , y)
h
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Examples

Some examples of PDEs are:

ux + uy = 0 ⇐ Transport equation (1)

uxx + uyy = 0 ⇐ Laplace’s equation (2)

utt − uxx = 0 ⇐ Wave equation (3)

ut − uxx = 0 ⇐ Heat equation (4)

uxx + uyy + uzz = 0 ⇐ Poisson equation (5)

ut + uux + uxxx = 0 ⇐ KdV equation (6)
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Classification of PDEs

There are a number of properties by which PDEs can be
separated into families of similar equations.

The two main properties are the order and the linearity.
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Classification of PDEs
The order

The order of a partial differential equation is the order of the
highest derivative present in the equation. In examples above

(1) is of first order,

(2), (3), (4) and (5) are of second order,

(6) is of third order.
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Classification of PDEs
Linear PDEs

A PDE is linear if it contains no products or powers of the
unknown function or its partial derivatives. In our examples
above

(1), (2), (3), (4) are linear,

(6) is nonlinear.
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Classification of second order linear PDEs

A second order linear PDE in two variables has the general
form

Auxx + 2Buxy + Cuyy = F . (7)

The quantity B2 − AC is called the discriminant and it can be
used to classify PDEs further as follows:

1 B2 − AC = 0⇐ The PDE is parabolic

2 B2 − AC < 0⇐ The PDE is elliptic

3 B2 − AC > 0⇐ The PDE is hyperbolic
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Classification of second order linear PDEs
Example

Classify following PDEs based on the value of the discriminant:

(a) uxx + uyy = 0

(b) ut − uxx = 0

(c) uxx − utt = 0
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Classification of second order linear PDEs
Example⇒ Solution

(a) B2 − AC = 02 − 1 × 1 = −1⇒ Elliptic

(b) B2 − AC = 02 − (−1) × 0 = 0⇒ Parabolic

(c) B2 − AC = 02 − (1) × (−1) = 1⇒ Hyperbolic
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Homogeneous PDEs

A PDE is homogeneous if every term involves the unknown
function or its partial derivatives and inhomogeneous if it does
not.

Eg:
ut + cux = 0 is homogeneous.

The linear PDE is non-homogeneous

a(x , t)ut + b(x , t)ux + c(x , t)u = d(x , t),

unless d(x , t) = 0.
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The superposition principle for PDEs

If two solutions, says u1 and u2 satisfy a linear homogeneous
PDE, then any linear combination of them u = c1u1 + c2u2 is
also a solution.
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Example 1

Consider the wave equation

∂2w
∂t2 = c2∂

2w
∂x2 , c − constant. (8)

Show that a solution is given by

w(t , x) = cos(2x + 2ct).
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Example 1
Solution

∂2w
∂t2 =

∂2

∂t2 cos(2x + 2ct)

=
∂
∂t

(
∂
∂t

cos(2x + 2ct)
)

=
∂
∂t

(− sin(2x + 2ct)(2c))

= −2c
∂

∂t
sin(2x + 2ct)

= −2c cos(2x + 2ct) · 2c
= −4c2 cos(2x + 2ct)
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Example 1
Solution⇒ Cont...

w(t , x) = cos(2x + 2ct)
∂w
∂x

= −2 sin(2x + 2ct)

∂2w
∂x2 = −4 cos(2x + 2ct)

c2∂
2w
∂x2 = −4c2 cos(2x + 2ct)

L.H.S = R.H.S
∂2w
∂t2 = c2∂

2w
∂x2

w(t , x) is a solution of (8).
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Example 2

Consider the Laplace equation given below:

∂2ϕ

∂x2 +
∂2ϕ

∂y2 = 0.

Show that

(a) ϕ1 = x and ϕ2 = x2 − y2 are solutions,

(b) a linear combination of ϕ1 and ϕ2 is also a solution,

of the Laplace equation.
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Example 2
Solution

(b)

ϕ = c1ϕ1 + c2ϕ2

ϕ = c1x + c2(x2 − y2)

∂2ϕ

∂x2 = 2c2

∂2ϕ

∂y2 = −2c2

⇒
∂2ϕ

∂x2 +
∂2ϕ

∂y2 = 0
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Initial Value Problems

Generally partial differential equations have lots of
solutions.

To get a unique solution, we need some additional
conditions.

These conditions are usually in two varieties; initial
conditions and boundary conditions.
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Initial Value Problems
Initial conditions

An initial condition specifies the physical state at a given
time t = t0.

For example, an initial condition for the heat equation
ut = kuxx , would be the starting temperature distribution:

u(x , 0) = f(x).
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Initial Value Problems
Boundary conditions

PDEs are also generally only valid on a certain domain.

Our heat equation was derived for a one-dimensional bar
of length l, so the relevant domain in question can be taken
to be the interval 0 < x < l and the boundary consists of
the two points x = 0 and x = l.

Boundary conditions specify how the solution is to behave
on the boundary of this domain.
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Initial Value Problems
Types of boundary conditions

We might know that, at the endpoints x = 0 and x = l, the
temperatures u(0, t) and u(l, t) are fixed. Boundary
conditions that give the value of the solution are called
Dirichlet conditions.

If the boundary conditions specify the derivative of the
solution, they’re called Neumann conditions. This would
yield the boundary conditions ux(0, t) = ux(l, t) = 0 and
meaning there should be no heat flow out of the boundary.

We could also specify that we have one insulated end and
at the other, we control the temperature; this is an example
of a mixed boundary condition.
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Analytical methods to solve PDEs

There are variety of methods to obtain symbolic or closed
form solutions of PDEs.

The method of separation of variables is one such and it
can be used to obtain analytical solutions for some simple
PDEs.

It should be noted that, this method cannot always be
used.
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Chapter 5
Section 5.2

Method of Separation of Variables
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Outline of the method

1 Separate the variables

Assume that

u(x , t) = X(x)T(t).

Substitute this into the PDE to get two ODE’s for X and T
separately.

2 Decide on the sign of the separation constant
The constant arises when you separate the variables.

3 Solve the separated ODE’s
You get, for example, ODE’s to solve for X(x) and T(t) that
depend on the constant in Step 2.
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Outline of the method
Cont...

4 Solve the (homogeneous) boundary conditions
So that you know what X(t) and T(t) are, and reconstruct
the funtion, for example u(x , t) that you need, using
u(x , t) = X(x)T(t).

5 Check that the u(x, t) that you have actually solves the
problem.
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Example 1

Use separation of variables on the following partial differential
equation:

∂u
∂t

= k
∂2u
∂x2 , (9)

u(0, t) = 0, (10)
u(l, t) = 0, (11)

u(x , 0) = f(x). (12)
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Example 1
Solution

We might suppose we have a separated solution, where

u(x , t) = X(x)T(t).

That is, our solution is the product of a function that depends
only on x and a function that depends only on t.

Substituting this form into the PDE we get

∂
∂t

X(x)T(t) = k
∂2

∂x2 X(x)T(t)

X(x)T ′(t) = kX ′′(x)T(t)
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Example 1
Solution⇒ Cont...

Now notice that we can move everything depending on x to one
side and everything depending on t to the other.

1
k

T ′(t)
T(t)

=
X ′′(x)
X(x)

On the left, we have an expression which depends only on t,
while on the right, we have an expression that depends only on
x.
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Example 1
Solution⇒ Cont...

Yet these two sides have to be equal for any choice of x and t
we make. The only way this is possible is if both sides of the
equation are the same constant. In other words,

1
k

T ′(t)
T(t)

=
X ′′(x)
X(x)

= −λ.

We’ve written the minus sign explictly for convenience: it will
turn out that λ > 0.

This constant λ is called the separation constant.
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Example 1
Solution⇒ Cont...

The equation above really contains a pair of separate ordinary
differential equations:

X ′′ + λX = 0 (13)
T ′ + λkT = 0. (14)

Now, in order that the product solution satisfy boundary
condition. So we have

u(0, t) = X(0)T(t) = 0⇒ X(0) = 0, (15)
u(l, t) = X(l)T(t) = 0⇒ X(l) = 0. (16)

We have got three cases to deal with.
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Example 1
Solution⇒ Cont...

Case I When λ > 0

Letting λ = β2 for β > 0, the general solution of (13) is

X(x) = B cos(βx) + C sin(βx).

The general solution of (14) is

T(t) = Ae−λkt .
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Example 1
Solution⇒ Cont...

By (15), we obtained X(0) = 0, so

X(x) = B cos(βx) + C sin(βx)
X(0) = B cos(β0) + C sin(β0)

0 = B .

By (16), we obtained X(l) = 0, so

X(x) = B cos(βx) + C sin(βx)
X(l) = 0 cos(βl) + C sin(βl)

0 = C sin(βl).
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Example 1
Solution⇒ Cont...

To avoid only having the trivial solution, we must have βl = nπ.

In other words,

λn =
(nπ

l

)2
and Xn(x) = sin

(nπx
l

)
for n = 1, 2, 3, · · ·

So we end up having found an infinite number of solutions to
our boundary value problem given by equations (9), (10) and
(11), one for each positive integer n.

They are

un(x , t) = Ane−(
nπ
l )

2
kt sin

(nπx
l

)
. (17)
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Example 1
Solution⇒ Cont...

The heat equation is linear and homogeneous. As such, the
principle of superposition still holds: a linear combination of
solutions is again a solution. So any function of the form

u(x , t) =
N∑

n=0

Ane−(
nπ
l )

2
kt sin

(nπx
l

)
. (18)

is also a solution to (9), (10) and (11).
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Example 1
Solution⇒ Cont...

Notice that we haven’t used our initial condition (12) yet, which
is why we referred to (18) as a solutions to just the boundary
value problem. How does our initial data come into play? We
have

f(x) = u(x , 0) =
N∑

n=0

An sin
(nπx

l

)
(19)

So if our initial condition has this form, (18) works perfectly for
us, with the coeffcients An just being the associated coeffcients
from f(x).
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Example 1
Solution⇒ Cont...

Case II When λ = 0

The solution to the differential equation (13) is

X(x) = B + Cx .

Applying the boundary conditions gives,

0 = X(0) = B + C0⇒ B = 0
0 = X(l) = 0 + Cl ⇒ C = 0.

In this case the only solution is the trivial solution.
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Example 1
Solution⇒ Cont...

Case III When λ < 0

The solution to the differential equation is

X(x) = B cosh
(√
−λx

)
+ C sinh

(√
−λx

)
.

Applying boundary condtions gives

0 = X(0) = B

0 = X(l) = C sinh(L
√
−l)

Since λ < 0, so L
√
−l , 0.

Hence C = 0.

In this case the only solution is the trivial solution.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 40/103



Example 2

Find the solution to the following heat equation problem on a
rod of length 2.

ut = uxx

u(0, t) = u(2, t) = 0

u(x , 0) = sin
(3πx

2

)
− 5 sin(3πx).
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Example 2
Solution

In this problem, we have k = 1 and l = 2. Now, we know that
our solution will have the form of something like:

u(x , t) =

N∑
n=0

Ane−(
nπ
l )

2
kt sin

(nπx
l

)
,

u(x , t) =

N∑
n=0

Ane−(
nπ
2 )

2
t sin

(nπx
2

)
.

t = 0⇒ u(x , 0) =

N∑
n=0

An sin
(nπx

2

)
(20)

We just need to figure out which terms are represented and
what the coefficients An are.
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Example 2
Solution⇒ Cont...

Our initial condition is

u(x , 0) = sin
(3πx

2

)
− 5 sin(3πx). (21)

Looking at (20) and (21), we can see that the first term
corresponds to n = 3 and the second n = 6, and there are no
other terms.

Thus we have A3 = 1, A6 = −5, and all other An = 0. Our
solution is then

u(x , t) = e
−
(

9π2
4

)
t
sin

(3πx
2

)
− 5e−(9π

2)t sin(3πx).
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An infinite sum of separated solutions

Let’s consider what happens if we take an infinite sum of
our separated solutions.

Then our solution to boundary value problem is

u(x , t) =
∞∑

n=0

Ane−(
nπ
l )

2
kt sin

(nπx
l

)
. (22)

Now the initial condition specifies that the coefficients must
satisfy

f(x) =
∞∑

n=0

An sin
(nπx

l

)
. (23)

This idea is due to the French mathematician Joseph
Fourier, and (23) is called the Fourier sine series for f(x).
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Example 3
Past paper 2011

Let a thin homogeneous string which is perfectly flexible under
uniform tension lie its equilibrium position along the x-axis. The
displacement u(x , t) of vibrating string which is attached to the
point x = 0 and x = 2 is described by the equation;

∂2u
∂t2 = c2∂

2u
∂x2 0 ≤ x ≤ 2, t > 0.

under the following conditions;

u(0, t) = 0 = u(2, t)

u(x , 0) = sin3
(
πx
2

)
ut(x , 0) = 0

where c is the wave speed.
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Example 3
Past paper 2011⇒ Cont...

(i) By assuming u(x , t) = X(x)T(t), in the usual notation build
up two ordinary differential equations for X(x) and T(t).
For non-trivial solutions of u(x , t) obtain expressions for
X(x) and T(t).

(ii) Show that the possible solution for the displacement of the
string is

u(x , t) =
∞∑

n=1

An sin
nπx

2
cos

nπct
2

where An is a constant.
(iii) Determining An, obtain the solution for u(x , t).
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Example 3
Solution

(i) Our intention is to try to find a solution that is a function of
x times a function of t. That is, we write

u(x , t) = X(x)T(t).

Substituting this form into the PDE we get

X(x)T ′′(t) = c2X ′′(x)T(t)

which gives

1
c2

T ′′(t)
T(t)

=
X ′′(x)
X(x)

. (24)
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Example 3
Solution⇒ Cont...

It is clear that the left-hand side of (24) is a function of time t,
while the right hand side is a function of space x.

The only way that this can be true for all x and t is if both
functions are actually equal to a constant. Hence

1
c2

T ′′(t)
T(t)

=
X ′′(x)
X(x)

= k (separation constant) (25)

X ′′(x) − kX(x) = 0 (26)
T ′′(t) − c2kT(t) = 0 (27)

The question remains what sign this constant should have.
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Example 3
Solution⇒ Cont...

Case I When k > 0

We take k = λ2. Then

d2X
dx2 − λ

2X = 0 ⇒ X(x) = c1eλx + c2e−λx

d2T
dt2 − c2λ2T = 0 ⇒ T(t) = c3eλct + c4e−λct

Therefore

u(x , t) = (c1eλx + c2e−λx)(c3eλct + c4e−λct)
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Example 3
Solution⇒ Cont...

Since u(0, t) = 0, we can get:

u(x , t) = X(x)T(t)
u(0, t) = X(0)T(t)

0 = X(0)T(t)⇒ X(0) = 0

By considering the solution of ODE (26) with X(0) = 0, we get:

X(x) = c1eλx + c2e−λx

0 = c1eλ0 + c2e−λ0

0 = c1 + c2

c1 = −c2
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Example 3
Solution⇒ Cont...

And also since u(2, t) = 0, we can get:

u(x , t) = X(x)T(t)
u(2, t) = X(2)T(t)

0 = X(2)T(t)⇒ X(2) = 0

By considering the solution of ODE (26) with X(2) = 0, we get:

X(x) = c1eλx + c2e−λx

X(2) = c1eλ2 + c2e−λ2

0 = c1(e2λ − e−2λ)

(e2λ − e−2λ) , 0⇒ c1 = c2 = 0

This gives a trivial solution. Therefore k > 0 is not possible.
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Example 3
Solution⇒ Cont...

Case II When k = 0

d2X
dx2 = 0⇒ X(x) = Ax + B

By considering the given boundary conditions, we have:

u(0, t) = 0⇒ B = 0,
u(2, t) = 0⇒ 2A = 0.

Since we are looking for a non trivial solution k = 0 is not
possible.
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Example 3
Solution⇒ Cont...

Case III When k < 0, say k = −λ2.

The differential equations and solutions are

d2X
dx2 + λ2X = 0⇒ X(x) = c1 cosλx + c2 sinλx

d2T
dt2 + c2λ2T = 0⇒ T(t) = c3 cosλct + c4 sinλct

Their general solution is

u(x , t) = (c1 cosλx + c2 sinλx) · (c3 cosλct + c4 sinλct)
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Example 3
Solution⇒ Cont...

(ii) Using the condition u(0, t) = 0

We obtain c1 = 0.

Then

ut(x , t) = c2 sinλx (−c3 sinλct + c4 cosλct)λc

Since ut(x , 0) = 0

0 = c2 sinλx(c4)λc
⇒ c4 = 0

Therefore we have u(x , t) = c2 sinλx · c3 cosλct.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 54/103



Example 3
Solution⇒ Cont...

Since

u(2, t) = 0 ⇒ sin 2λ = 0

⇒ λ =
nπ
2

;n = 1, 2, · · ·

Thus, the possible solution is

u(x , t) =
∞∑

n=1

An sin
nπx

2
cos

nπct
2

.
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Example 3
Solution⇒ Cont...

(iii) Finally using condition u(x , 0) = sin3 πx
2 , we obtain

∞∑
n=1

An sin
nπx

2
= sin3 πx

2

=
3
4

sin
πx
2
− 1

4
sin

3πx
2

A1 = 3
4 , A3 = −1

4 while all other A ′ns are zero.

Hence the required solution is

u(x , t) =
3
4

sin
πx
2

cos
πct
2
− 1

4
sin

3πx
2

cos
3πct

2
.
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Two dimensional heat flow

Consider the heat flow in a metal plate of uniform
thickness, in the directions parallel to length and breadth of
the plate.

There is no heat flow along the normal to the plane of the
rectangle.
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Two dimensional heat flow
Laplace equation

Let u(x , y) be the temperature at any point (x , y) of the plate at
time t is given by

∂u
∂t

= c2
(
∂2u
∂x2 +

∂2u
∂y2

)
. (28)

In the steady state, u does not change with t, so we have:

∂u
∂t

= 0.

Hence (28) becomes

∂2u
∂x2 +

∂2u
∂y2 = 0.

This is called Laplace equation in two dimensions.
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How to solve Laplace equation

The way of solving Laplace’s equation will depend upon the
geometry of the 2-D object we’re solving it on. Let’s start out by
solving it on the rectangle given by 0 ≤ x ≤ L, 0 ≤ y ≤ H. For
this geometry Laplace’s equation along with the four boundary
conditions will be,

∂2u
∂x2 +

∂2u
∂y2 = 0, (29)

u(0, y) = g1(y) u(L , y) = g2(y),
u(x , 0) = f1(x) u(x ,H) = f2(x).
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How to solve Laplace equation
Cont...

It is important to notice that we will not have any initial
conditions here.

Both variables are spatial variables and each variable
occurs in a 2nd order derivative and so we’ll need two
boundary conditions for each variable.

Moreover the partial differential equation is both linear and
homogeneous; the boundary conditions are only linear and
are not homogeneous.

This creates a problem because separation of variables
requires homogeneous boundary conditions.
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How to solve Laplace equation
Cont...

To completely solve Laplace’s equation we’re in fact going
to have to solve it four times. Each time we solve it only
one of the four boundary conditions can be non
homogeneous while the remaining three will be
homogeneous.

The four problems are probably best shown with a quick
sketch so let’s consider the following sketch.
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How to solve Laplace equation
Cont...
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How to solve Laplace equation
Cont...
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How to solve Laplace equation
Cont...

Now, once we solve all four of these problems the solution to
our original system, (29), will be,

u(x , y) = u1(x , y) + u2(x , y) + u3(x , y) + u4(x , y).

Because we know that Laplace’s equation is linear and
homogeneous and each of the pieces is a solution to Laplace’s
equation then the sum will also be a solution. Also, this will
satisfy each of the four original boundary conditions. We’ll
verify only the first one.

u(x , 0) = u1(x , 0) + u2(x , 0) + u3(x , 0) + u4(x , 0) = f1(x).
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How to solve Laplace equation
Cont...

Here the nonhomogeneous boundary condition will take
the place of the initial condition.

We will apply separation of variables to the each problem
and find a product solution that will satisfy the differential
equation and the three homogeneous boundary conditions.

Using the principle of superposition we’ll find a solution to
the problem and then apply the final boundary condition to
determine the value of the constant(s) that are left in the
problem.
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Example

Solve

∂2u
∂x2 +

∂2u
∂y2 = 0,

which satisfies the conditions

u(0, y) = u(l, y) = u(x , 0) = 0

and u(x , a) = sin
nπx

l
.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 66/103



Example
Solution

The PDE is

∂2u
∂x2 +

∂2u
∂y2 = 0. (30)

Let

u(x , y) = X(x).Y(y). (31)

Putting the value of
∂2u
∂x2 and

∂2u
∂y2 in (30) we have

X ′′Y + XY ′′ = 0
X ′′

X
= −Y ′′

Y
= −λ2

X ′′ = −λ2X or X ′′ + λ2X = 0 (32)
Y ′′ = λ2Y or Y ′′ − λ2Y = 0 (33)
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Example
Solution⇒ Cont...

By considering characteristic polynomial of (32), we get

m2 + λ2 = 0
m = ±iλ
X = c1 cosλx + c2 sinλx .

By considering characteristic polynomial of (33), we get

m2 − λ2 = 0
m = ±λ
Y = c3eλy + c4e−λy .
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Example
Solution⇒ Cont...

Putting the values of X and Y in (31) we have

u(x , y) = X(x).Y(y) (34)
u(x , y) = (c1 cosλx + c2 sinλx).(c3eλy + c4e−λy). (35)

Putting x = 0 and u(0, y) = 0 in (35) we have

u(0, y) = (c1 cosλ0 + c2 sinλ0).(c3eλy + c4e−λy)

0 = c1.(c3eλy + c4e−λy)

c1 = 0.
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Example
Solution⇒ Cont...

Then (35) is reduced to

u(x , y) = c2 sinλx(c3eλy + c4e−λy) (36)

On putting x = l and u(l, y) = 0, we have

u(l, y) = c2 sinλl(c3eλy + c4e−λy)

0 = c2 sinλl(c3eλy + c4e−λy)

c2 , 0⇒ sinλl = 0 = sin nπ
λl = nπ
λ =

nπ
l
.
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Example
Solution⇒ Cont...

Now (36) becomes

u(x , y) = c2 sin
nπx

l
.
(
c3e

nπy
l + c4e

−nπy
l

)
(37)

On putting y = 0 and u(x , 0) = 0 in (37) we have

u(x , 0) = c2 sin
nπx

l
.
(
c3e

nπ0
l + c4e

−nπ0
l

)
0 = c2 sin

nπx
l
.(c3 + c4)

(c3 + c4) = 0 or c3 = −c4.

(37) becomes

u(x , y) = c2c3 sin
nπx

l
.
(
e

nπy
l − e

−nπy
l

)
(38)
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Example
Solution⇒ Cont...

On putting y = a and u(x , a) = sin nπx
l in (38), we get

u(x , a) = c2c3 sin
nπx

l
.
(
e

nπa
l − e

−nπa
l

)
sin

nπx
l

= c2c3 sin
nπx

l
.
(
e

nπa
l − e

−nπa
l

)
c2c3 =

1

e
nπa

l − e
−nπa

l
.

Putting this value in (38) we have

u(x , y) = sin
nπx

l
e

nπy
l − e

−nπy
l

e
nπa

l − e
−nπa

l

u(x , y) = sin
nπx

l

sinh
nπy

l

sinh
nπa

l

.
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Exercise

Solve

∂2u
∂x2 +

∂2u
∂y2 = 0,

which satisfies the conditions

u(0, y) = u(π, y) = 0 for all y ,
u(x , 0) = k , 0 < x < π.

and lim
y→∞

u(x , y) = 0, 0 < x < π.

Answer

u(x , y) =
∞∑

n=1

bn sin nxe−ny , k =

∞∑
n=1

bn sin nx .
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Chapter 5
Section 5.3

D’Alembert’s Method
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The wave equation

The wave equation is second order linear hyperbolic PDE
that describes the propagation of variety of waves, such as
sound or water waves.

Historically, the problem of a vibrating string such as that of
a musical instrument was studied by Jean le Rond
D’Alembert.

He found a formula for general solution to the
one-dimensional wave equation.

It is named after him as D’Alembert solutions.
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D’Alembert’s solutions

The wave equation utt = c2uxx has the D’Alembert’s
solutions ϕ(x − ct) + ψ(x + ct), for some choices of the
functions ϕ and ψ to suit the given conditions.

Such solutions are waves travelling at constant speed c on
both directions along x-axis.

To see how this is arrived; we need to do some
applications of the chain rule for partial derivatives.
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D’Alembert’s solutions
Cont...

Let v = x + ct and w = x − ct

∂u
∂x

=
∂u
∂v
.
∂v
∂x

+
∂u
∂w

.
∂w
∂x

∂u
∂x

=
∂u
∂v
.(1) +

∂u
∂w

.(1)

∂u
∂x

=
∂u
∂v

+
∂u
∂w
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D’Alembert’s solutions
Cont...

∂

∂x
=

∂

∂v
+

∂

∂w
∂
∂x

(
∂u
∂x

)
=

(
∂
∂v

+
∂
∂w

) (
∂u
∂x

)
∂2u
∂x2 =

∂
∂v

(
∂u
∂x

)
+

∂

∂w

(
∂u
∂x

)
=

∂
∂v

(
∂u
∂v

+
∂u
∂w

)
+

∂
∂w

(
∂u
∂v

+
∂u
∂w

)
=

∂2u
∂v2 + 2

∂2u
∂v∂w

+
∂2u
∂w2

= uvv + 2uvw + uww
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D’Alembert’s solutions
Cont...

∂u
∂t

=
∂u
∂v
.
∂v
∂t

+
∂u
∂w

.
∂w
∂t

∂u
∂t

= uvc + uw(−c)

ut = c(uv − uw)

∂2u
∂t2 =

∂
∂t

[c(uv − uw)]

= c
[
c
(
∂

∂v
− ∂

∂w

)]
(uv − uw)

= c2
[
∂2u
∂v2 +

∂2u
∂w2 − 2

∂2u
∂v∂w

]
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D’Alembert’s solutions
Cont...

∂2u
∂t2 = c2∂

2u
∂x2

c2
[
∂2u
∂v2 +

∂2u
∂w2 − 2

∂2u
∂v∂w

]
= c2

[
∂2u
∂v2 +

∂2u
∂w2 + 2

∂2u
∂v∂w

]
4c2 ∂2u

∂v∂w
= 0

∂2u
∂v∂w

= 0, c > 0

uvw = 0. (39)
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D’Alembert’s solutions
Cont...

By integrating (39) with respect to w we get

∂u
∂v

= f(v) (40)

where f(v) is constant in respect of w.

Again integrating (40) with respect to v we get

u =

∫
f(v)dv + ϕ(w) (41)

where ϕ(w) is a constant in respect of v.

u = ψ(v) + ϕ(w) where ψ(v) =
∫

f(v)dv

u(x , t) = ψ(x + ct) + ϕ(x − ct). (42)

This is D’Almbert’s solution of wave equation.
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D’Alembert’s solutions
Cont...

To determine ϕ and ψ, let us apply initial conditions. Suppose
we are given

u(x , 0) = f(x) and
ut(x , 0) = 0

Differentiating (42) with respect to t, we get

∂u
∂t

= −cϕ′(x − ct) + cψ′(x + ct)

ut(x , t) = −cϕ′(x − ct) + cψ′(x + ct)
ut(x , 0) = −cϕ′(x − c0) + cψ′(x + c0)

0 = −cϕ′(x) + cψ′(x)
ϕ′(x) = ψ′(x)
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D’Alembert’s solutions
Cont...

ϕ′(x) = ψ′(x)
ϕ(x) = ψ(x) + b , b − constant

Again substituting u(x , 0) = f(x) and t = 0 in (42) we get

u(x , t) = ϕ(x − ct) + ψ(x + ct)
u(x , 0) = ϕ(x) + ψ(x)

f(x) = ϕ(x) + ψ(x)
f(x) = [ψ(x) + b] + ψ(x)
f(x) = 2ψ(x) + b

ψ(x) =
f(x) − b

2
ϕ(x) =

f(x) + b
2
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D’Alembert’s solutions
Cont...

On putting the values of ψ(x + ct) and ϕ(x − ct) in (42), we get

u(x , t) = ψ(x + ct) + ϕ(x − ct)

=
f(x + ct) − b

2
+

f(x − ct) + b
2

=
1
2
[f(x − ct) + f(x + ct)]
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Example 1

Use D’Alembert’s method to find solutions for the PDE

36ytt = 49yxx , when
y(x , 0) = sin x
yt(x , 0) = 2.
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Example 1
Solution

36ytt = 49yxx

ytt =
49
36

yxx

ytt = c2yxx ⇒
49
36
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Example 1
Solution⇒ Cont...

Let’s take two new independent variable as v = x + ct and
w = x − ct.

∂y
∂x

=
∂y
∂v
.
∂v
∂x

+
∂y
∂w

.
∂w
∂x

∂y
∂x

=
∂y
∂v
.(1) +

∂y
∂w

.(1)

∂y
∂x

=
∂y
∂v

+
∂y
∂w

∂
∂x

=
∂

∂v
+

∂

∂w
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Example 1
Solution⇒ Cont...

∂
∂x

=
∂

∂v
+

∂

∂w
∂

∂x

(
∂y
∂x

)
=

(
∂

∂v
+

∂

∂w

) (
∂y
∂x

)
∂2y
∂x2 =

∂
∂v

(
∂y
∂x

)
+

∂

∂w

(
∂y
∂x

)
=

∂

∂v

(
∂y
∂v

+
∂y
∂w

)
+

∂

∂w

(
∂y
∂v

+
∂y
∂w

)
=

∂2y
∂v2 + 2

∂2y
∂v∂w

+
∂2y
∂w2

= yvv + yww + 2yvw
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Example 1
Solution⇒ Cont...

∂y
∂t

=
∂y
∂v
.
∂v
∂t

+
∂y
∂w

.
∂w
∂t

∂y
∂t

= yvc + yw(−c)

yt = c(yv − yw)

∂2y
∂t2 =

∂
∂t

[c(yv − yw)]

= c
[
c
(
∂

∂v
− ∂

∂w

)]
(yv − yw)

= c2
[
∂2y
∂v2 +

∂2y
∂w2 − 2

∂2y
∂v∂w

]
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Example 1
Solution⇒ Cont...

∂2y
∂t2 = c2∂

2y
∂x2

c2
[
∂2y
∂v2 +

∂2y
∂w2 − 2

∂2y
∂v∂w

]
= c2

[
∂2y
∂v2 +

∂2y
∂w2 + 2

∂2y
∂v∂w

]
4c2 ∂2y

∂v∂w
= 0

∂2y
∂v∂w

= 0, c > 0

yvw = 0. (43)
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Example 1
Solution⇒ Cont...

By integrating (43) with respect to w we get

∂y
∂v

= f(v) (44)

where f(v) is constant in respect of w.

Again integrating (44) with respect to v we get

y =

∫
f(v)dv + ϕ(w) (45)

where ϕ(w) is a constant in respect of v.

y = ϕ(v) + ϕ(w) where ϕ(v) = f(v)dv
y(x , t) = ϕ(x + ct) + ψ(x − ct).

This is D’Almbert’s solution of wave equation.
Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 91/103



Example 1
Solution⇒ Cont...

To determine ϕ and ψ, let us apply initial conditions.

y(x , 0) = sin x and
yt(x , 0) = 2.

Differentiating with respect to t, we get

∂y
∂t

= −cϕ′(x − ct) + cψ′(x + ct)

yt(x , t) = cϕ′(x + ct) − cψ′(x − ct)
yt(x , 0) = cϕ′(x + c0) − cψ′(x − c0)

2 = cϕ′(x) − cψ′(x)

ϕ′(x) − ψ′(x) =
2
c

ϕ(x) = ψ(x) +
2
c

x + b
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Example 1
Solution⇒ Cont...

Again substituting y(x , 0) = sin x and t = 0 in () we get

y(x , t) = ϕ(x + ct) + ψ(x − ct)
y(x , 0) = ϕ(x) + ψ(x)

sin x = ϕ(x) + ψ(x)

sin x = ψ(x) + ψ(x) +
2
c

x + b

sin x = 2ψ(x) +
2
c

x + b

ψ(x) =
sin x

2
− x

c
− b

2

ϕ(x) =
sin x

2
+

x
c
+

b
2

y(x , t) =
sin(x + ct)

2
+

sin(x − ct)
2

+ 2t
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Exercise 1

A string of length l is initially at rest in equilibrium position and
each of its points are given velocity.(

∂y
∂t

)
t=0

= b sin3 πx
l
.

Find the displacement y(x , t).

Answer

y(x , t) =
∑

bn sin
nπx

l
sin

ncπ
l

t .
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Chapter 5
Section 5.4

Method of characteristics
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About method of characteristics

The method of characteristics is a technique for solving
first-order PDE.

For a first-order PDE, the method of characteristics
discovers curves (called characteristic curves or just
characteristics) along which the PDE becomes an ODE.

Once the ODE is found, it can be solved along the
characteristic curves and transformed into a solution for
the original PDE.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 96/103



Past paper 2011

Solve the initial value problem:

u2∂u
∂x

+
∂u
∂t

= 0;

u(x , 0) =
√

x; x > 0

using the method of characteristics.
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Past paper 2011
Solution

u2∂u
∂x

+
∂u
∂t

= 0. (46)

The aim of the method of characteristics is to solve the PDE by
finding curves in the x − t plane that reduce the equation into
an ODE.

In general, any curve in the x − t plane can be expressed in
parametric form by x = x(r), t = t(r), where r gives a measure
of the distance along the curve.

The curve starts at the initial point, x = x0, t = 0, when r = 0.
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Past paper 2011
Solution⇒ Cont...

u(x , t) = u(x(r), t(r))⇒ u is a function of r .

Hence derivative of u with respect to r is

du
dr

=
∂u
∂x

dx
dr

+
∂u
∂t

dt
dr

du
dr

=
dx
dr
∂u
∂x

+
dt
dr
∂u
∂t

(47)

Compare (46) and (47)

du
dr

= 0
dx
dr

= u2 dt
dr

= 1.
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Past paper 2011
Solution⇒ Cont...

dt
dr

= 1⇒ t = r + k1 (constant).

Since when r = 0, t = 0⇒ k1 = 0.

Therefore t = r.

du
dr

= 0 ⇒ u = constant on characteristics curve.

u = F(x0)
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Past paper 2011
Solution⇒ Cont...

dx
dr

= u2

x = u2r + k2 (constant).

When r = 0, x = x0

x0 = k2

x = u2t + x0

x0 = x − u2t

Substituting for x0 in F(x0), we obtain the implicit solution

u(x , t) = F(x − u2t),

where F is determined by given following initial conditions:

t = 0, x = x0 and u =
√

x0. (48)
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Past paper 2011
Solution⇒ Cont...

Thus, F(x0) =
√

x0.

Therefore u =
√

x − u2t .

Squaring both sides,

u2 = x − u2t
x = u2(1 + t)

u =

√
x

1 + t
, x > 0, t > 0.
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Thank you !
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