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Partial Differential Equations
(PDEs)

Department of Mathematics University of Ruhuna — Mathematical Modelling-1I[(AMT221p/IMT221p) 2/103



Chapter 5

Section 5.1

The Concept of a PDE
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Introduction

m Partial differential equations (PDEs) are used to describe a
large variety of physical phenomena, from fluid flow to
electromagnetic fields, aircraft simulation, and computer
graphics.

m A PDE is any equation involving a function of more than
one independent variable and at least one partial
derivative of that function.

JPu Pu T oT . JT

_— 2—— _—
m Eg: ax2+8y2 =1, N 3w 5w 5v8v'
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Definition
First order partial derivatives

The partial derivative of f(x, y) with respect to x is

of . fx+hy)-f(x,y)
8_X_fx_f|7|£>no h

The partial derivative of f(x, y) with respect to y is

of . f(x,y+h)—1f(x,y)
lim .
h—0 h
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Definition
Second order partial derivatives

The second order partial derivatives of f(x, y) are:

Rt k(x+hy)-f(xy)
o~ h
I (ofy _ Pt L Koyt h) - h(xy)
dy\ox| — adyax T oo h
& — f. = lim fy(X’y+h)_fY(X/y)
2~ W P
i ﬂ _ 32)‘ —f., — lim fy(X+h/y)_fY(X/y)
ox\dy| — oIxay " hoo h
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Examples

Some examples of PDEs are:

UX“FUy —

Uxx + Uy =

Uit — Uxx =

Ut — Uxx =

UXX + Uyy + UZZ =

Ut + UUx + Uxxx =

0

=

Transport equation
Laplace’s equation
Wave equation
Heat equation
Poisson equation

KdV equation
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Classification of PDEs

m There are a number of properties by which PDEs can be
separated into families of similar equations.

m The two main properties are the order and the linearity.
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Classification of PDEs
The order

The order of a partial differential equation is the order of the
highest derivative present in the equation. In examples above

m (1) is of first order,
m (2), (3), (4) and (5) are of second order,

m (6) is of third order.
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Classification of PDEs
Linear PDEs

A PDE is linear if it contains no products or powers of the
unknown function or its partial derivatives. In our examples
above

m (1), (2), (3), (4) are linear,

m (6) is nonlinear.
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Classification of second order linear PDEs

A second order linear PDE in two variables has the general
form

The quantity B? — AC is called the discriminant and it can be
used to classify PDEs further as follows:

B? — AC = 0 & The PDE is parabolic
B? — AC < 0 « The PDE is elliptic

B? — AC > 0 « The PDE is hyperbolic
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Classification of second order linear PDEs
Example

Classify following PDEs based on the value of the discriminant:
(b) ut—uxx =0

(C) Uxx—ux =0
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Classification of second order linear PDEs
Example = Solution

(a) B> - AC = 0%2-1x1=-1= Elliptic
(b) B2 - AC = 0% - (-1) x 0 = 0 = Parabolic

(c) B2 - AC = 0% - (1) x (=1) = 1 = Hyperbolic
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Homogeneous PDEs

A PDE is homogeneous if every term involves the unknown

function or its partial derivatives and inhomogeneous if it does
not.

Eg:
®m U; + cuy = 0 is homogeneous.

m The linear PDE is non-homogeneous
a(x, tyus + b(x, t)ux + c(x, t)u = d(x, 1),

unless d(x,t) = 0.
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The superposition principle for PDEs

If two solutions, says us and up satisfy a linear homogeneous
PDE, then any linear combination of them u = ciuy + cous is
also a solution.
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Example 1

Consider the wave equation

2 2
aaT‘;v = cngVZV, C — constant. (8)

Show that a solution is given by

w(t, x) = cos(2x + 2ct).
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Example 1
Solution

Pw
ot?

2

d
3 cos(2x + 2ct)

d(d
3 (ﬁ cos(2x + 201‘))

% (—sin(2x + 2ct)(2¢))

J .
—205 sin(2x + 2ct)

—2ccos(2x + 2ct) - 2¢
—4¢2 cos(2x + 2ct)
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Example 1
Solution = Cont...

w(t, x)
ow
ox

°w
Ix2
52w
Ix2
L.H.S
Pw
or

w(t, x) is a solution of (8).

cos(2x + 2ct)
—-2sin(2x + 2ct)

—4 cos(2x + 2ct)

—4¢2 cos(2x + 2ct)
R.H.S
202w
ox?
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Example 2

Consider the Laplace equation given below:

92 92
_(P + _¢ =0.
ox2 = oy?

Show that

(a) ¢1 = x and ¢2 = x2 — y? are solutions,

(b) alinear combination of ¢ and ¢2 is also a solution,

of the Laplace equation.
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Example 2

Solution
(b)
¢ = C1P1+ Cap2
¢ = C1x+ CQ(X2 — y2)
82q5
—_7 _ 9
ox? e
82q[)
—_7 _ _9
ady? e
82qb 82¢
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Initial Value Problems

m Generally partial differential equations have lots of
solutions.

m To get a unique solution, we need some additional
conditions.

m These conditions are usually in two varieties; initial
conditions and boundary conditions.
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Initial Value Problems
Initial conditions

m An initial condition specifies the physical state at a given
time t = fp.

m For example, an initial condition for the heat equation
Ut = Kuyy, would be the starting temperature distribution:

u(x,0) = f(x).
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Initial Value Problems
Boundary conditions

m PDEs are also generally only valid on a certain domain.

m Our heat equation was derived for a one-dimensional bar
of length /, so the relevant domain in question can be taken
to be the interval 0 < x < I and the boundary consists of
the two points x =0 and x = I.

m Boundary conditions specify how the solution is to behave
on the boundary of this domain.
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Initial Value Problems
Types of boundary conditions

m We might know that, at the endpoints x = 0 and x = |, the
temperatures u(0, t) and u(/, t) are fixed. Boundary
conditions that give the value of the solution are called
Dirichlet conditions.

m If the boundary conditions specify the derivative of the
solution, they’re called Neumann conditions. This would
yield the boundary conditions ux(0,t) = ux(/,t) = 0 and
meaning there should be no heat flow out of the boundary.

m We could also specify that we have one insulated end and
at the other, we control the temperature; this is an example
of a mixed boundary condition.
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Analytical methods to solve PDEs

m There are variety of methods to obtain symbolic or closed
form solutions of PDEs.

m The method of separation of variables is one such and it

can be used to obtain analytical solutions for some simple
PDEs.

m It should be noted that, this method cannot always be
used.
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Chapter 5
Section 5.2

Method of Separation of Variables
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Outline of the method

Separate the variables

Assume that
u(x, t) = X(x)T(t).

Substitute this into the PDE to get two ODE’s for X and T
separately.

Decide on the sign of the separation constant
The constant arises when you separate the variables.

Solve the separated ODE’s
You get, for example, ODE’s to solve for X(x) and T(t) that
depend on the constant in Step 2.
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Outline of the method
Cont...

Solve the (homogeneous) boundary conditions
So that you know what X(t) and T(t) are, and reconstruct
the funtion, for example u(x, t) that you need, using
u(x,t) = X(x)T(t).

Check that the u(x, t) that you have actually solves the
problem.
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Example 1

Use separation of variables on the following partial differential
equation:

2
ou k& u

- o ©
u(0,t) = 0, (10)
u(l,t) = 0, (11)
u(x,0) = f(x). (12)
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Example 1
Solution

We might suppose we have a separated solution, where

u(x, t) = X(x)T(t).

That is, our solution is the product of a function that depends

only on x and a function that depends only on t.

Substituting this form into the PDE we get

2
%X(x) T(t) = k%X(x) T(1)

X(x)T'(t) = kX"(x)T(t)
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Example 1
Solution = Cont...

Now notice that we can move everything depending on x to one
side and everything depending on t to the other.

1T X"(0)

kT X

On the left, we have an expression which depends only on t,
while on the right, we have an expression that depends only on
X.
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Example 1
Solution = Cont...

Yet these two sides have to be equal for any choice of x and t
we make. The only way this is possible is if both sides of the
equation are the same constant. In other words,

17'(t)  X"(x)

KT X(x) -

We’ve written the minus sign explictly for convenience: it will
turn out that A > 0.

This constant A is called the separation constant.
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Example 1
Solution = Cont...

The equation above really contains a pair of separate ordinary
differential equations:

X' 4+AX = 0 (13)
T + AKT = 0. (14)

Now, in order that the product solution satisfy boundary
condition. So we have

u(0,f) = X(0)T(t)=0= X(0)=0, (15)
ul,t) = X()T(t)=0= X(I) = 0. (16)

We have got three cases to deal with.
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Example 1
Solution = Cont...

Case | When A >0
Letting A = 2 for g > 0, the general solution of (13) is

X(x) = Bcos(Bx) + C sin(Bx).
The general solution of (14) is

T(t) = Ae™ ¥,
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Example 1
Solution = Cont...

By (15), we obtained X(0) = 0, so

X(x) = Bcos(px)+ Csin(px)
X(0) = Becos(p0)+ Csin(p0)
= B.

By (16), we obtained X(/) = 0, so

X(x) = Bcos(px)+ Csin(px)
X(l) = 0cos(Bl)+ Csin(pl)
0 = Csin(gl).
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Example 1
Solution = Cont...

To avoid only having the trivial solution, we must have gl = nm.
In other words,

2
An:(nTn) and Xn()—sm(nl )forn—123

So we end up having found an infinite number of solutions to
our boundary value problem given by equations (9), (10) and
(11), one for each positive integer n.

They are

Un(x, 1) = Ane~(F) K sin (’”ITX). (17)
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Example 1
Solution = Cont...

The heat equation is linear and homogeneous. As such, the
principle of superposition still holds: a linear combination of
solutions is again a solution. So any function of the form

u(x, t) = XN: Ane~(F) K sin (nilx) (18)

is also a solution to (9), (10) and (11).
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Example 1
Solution = Cont...

Notice that we haven’t used our initial condition (12) yet, which
is why we referred to (18) as a solutions to just the boundary
value problem. How does our initial data come into play? We
have

f(x) = u(x,0) = ZN" Ansin (”LIX) (19)
n=0

So if our initial condition has this form, (18) works perfectly for
us, with the coeffcients A, just being the associated coeffcients
from f(x).
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Example 1
Solution = Cont...

Case ll When A =0

The solution to the differential equation (13) is
X(x) =B+ Cx.
Applying the boundary conditions gives,

0=X(0) = B+C0O=B=0
0=X() = 0+Cl=C=0.

In this case the only solution is the trivial solution.
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Example 1
Solution = Cont...

Case lll When A <0
The solution to the differential equation is
X(x) = Bcosh ( V=Ax) + Csinh (V=1x).
Applying boundary condtions gives
0 = X(0)=8B
0 = X(I)= Csinh(L V=)

Since A < 0,s0 L V=1 #0.
Hence C = 0.

In this case the only solution is the trivial solution.
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Example 2

Find the solution to the following heat equation problem on a
rod of length 2.

Ut = Uxx
u0,t) = u(2,t)=0

u(x,0) = sin(?mTX)—5sin(3nx).
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Example 2

Solution

In this problem, we have k = 1 and | = 2. Now, we know that
our solution will have the form of something like:

N m\2 nmx
ux,t) = nZ'aA,,e‘(T) k’sin(%),
f = NA —(”7”)2f' nmx
u(x,t) = nZé ne sm(T).
N nmx
t—0= u(x,0) — ZA,,sin(T) (20)
n=0

We just need to figure out which terms are represented and
what the coefficients A, are.
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Example 2
Solution = Cont...

Our initial condition is
u(x,0) = sin (?mTX)—Ssin(an). (21)

Looking at (20) and (21), we can see that the first term
corresponds to n = 3 and the second n = 6, and there are no
other terms.

Thus we have As = 1, As = -5, and all other A, = 0. Our
solution is then
2

[ 9=
ux,t)=e (% )tsin (?me) — 56~ (O™) gin(3nx).
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An infinite sum of separated solutions

m Let’s consider what happens if we take an infinite sum of
our separated solutions.

m Then our solution to boundary value problem is

u(x, t) = Z Ane‘(nTﬂ) sin (mITX). (22)

m Now the initial condition specifies that the coefficients must
satisfy

X) = i Ansin(”ilx). (23)
n=0

m This idea is due to the French mathematician Joseph
Fourier, and (23) is called the Fourier sine series for f(x).
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Example 3
Past paper 2011

Let a thin homogeneous string which is perfectly flexible under
uniform tension lie its equilibrium position along the x-axis. The
displacement u(x, t) of vibrating string which is attached to the
point x = 0 and x = 2 is described by the equation;

Fu_ o
otz 7 ox2

under the following conditions;

0<x<2 t>0.

u(0,t) = 0=u(2,t)
u(x,0) = sin® (%X)
u(x,0) = 0

where ¢ is the wave speed.

Department of Mathematics University of Ruhuna — Mathematical Modelling-1I[(AMT221p/IMT221p) 45/103



Example 3
Past paper 2011 = Cont...

(i) By assuming u(x,t) = X(x)T(t), in the usual notation build
up two ordinary differential equations for X(x) and T(t).
For non-trivial solutions of u(x, t) obtain expressions for
X(x) and T(t).

(i) Show that the possible solution for the displacement of the
string is

nmet
ZAnsm—co RT

where A, is a constant.
(iii) Determining Ap, obtain the solution for u(x, t).
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Example 3

Solution

(i) Qur intention is to try to find a solution that is a function of
X times a function of t. That is, we write

u(x, t) = X(x)T(t).
Substituting this form into the PDE we get
XO)T"(t) = 2X"(x)T(t)
which gives

1 T7()  X"(x)
2 T()  X»x)

(24)
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Example 3

Solution = Cont...

It is clear that the left-hand side of (24) is a function of time t,
while the right hand side is a function of space x.

The only way that this can be true for all x and t is if both
functions are actually equal to a constant. Hence

177()  X'(x)

= k (separation constant) (25)

AT X(x)
X"(x)-kX(x) = 0 (26)
T”(t) - c?kT(t) = 0 (27)

The question remains what sign this constant should have.
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Example 3

Solution = Cont...

Casel Whenk >0
We take k = A2. Then

d2X 2 AX —-AX
o2 -A°X=0 = X(Xx)=cie" +ce
d2T 212 Act —Act

Therefore

u(x, t) = (cre™ + coe™™)(cze! 4 che™)
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Example 3

Solution = Cont...

Since u(0,t) = 0, we can get:

ulx,t) = X(x)T(1)
u(0,t) = X(0)T(t)
0 = X(0)T(t)= X(0)=0

By considering the solution of ODE (26) with X(0) = 0, we get:

X(x) = cre™+ce™
0 = ¢+ e
0 = ¢+
cCit = —Co
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Example 3

Solution = Cont...

And also since u(2,t) = 0, we can get:

ulx,t)y = X(x)T(t)
ui2,t) = X(@2)T(t)
0 = X(2)T(t)= X(2)=0

By considering the solution of ODE (26) with X(2) = 0, we get:

X(x) = cie™+ce™

X(2) = cie"? 4 coe?

0 = ci(e*-e?
(e*'-e?) # 0=>c1=c=0

This gives a trivial solution. Therefore k > 0 is not possible.
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Example 3

Solution = Cont...

Case l When k =0

ax
dx2

By considering the given boundary conditions, we have:

—0= X(x)=Ax + B

u(0,t) = 0=B=0,
ui2,t) = 0=>2A=0.

Since we are looking for a non trivial solution k = 0 is not
possible.
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Example 3

Solution = Cont...

Case lll When k < 0, say k = —A2.

The differential equations and solutions are

X .
WJFA X = 0= X(x) =c1CcosAx + casinAx
W—FC/\ T = 0= T(t) =cscosAct+ cqsinict

Their general solution is

u(x,t) = (c1 cos Ax + ¢z sin Ax) - (cz cos Act + ¢4 sin Act)
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Example 3

Solution = Cont...

(i) Using the condition u(0,t) =0
We obtain ¢y = 0.
Then
ui(x,t) = cosin Ax (—cz sin Act + c4 cos Act) Ac
Since u(x,0) =0
0 = cpsinAx(cq)Ac

:>C4:0

Therefore we have u(x,t) = cosin Ax - c3 cos Act.
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Example 3

Solution = Cont...

Since

u2,t)=0 = sin21 =0

nr
= A=Zin=12-

Thus, the possible solution is

nreet
Z An sm —_— cos HT
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Example 3

Solution = Cont...

(iii) Finally using condition u(x,0) = sin® X, we obtain

ZA,,sm X _ g3 X
P
3 nx 1 . 3nx

= ZSIn?_ZSInT

A1 = 2, As = -} while all other A/s are zero.
Hence the required solution is

u(x t)—gsmn—xcosn—a—lsin%—xcosw
’ 4 2 2 4 2 2
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Two dimensional heat flow

m Consider the heat flow in a metal plate of uniform
thickness, in the directions parallel to length and breadth of
the plate.

m There is no heat flow along the normal to the plane of the
rectangle. y-ais

x-axis

00
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Two dimensional heat flow
Laplace equation

Let u(x, y) be the temperature at any point (x, y) of the plate at
time t is given by

du 2(82u 82u). (28)

gt~ S \ox2 T oy2
In the steady state, u does not change with t, so we have:

Jdu
5 0.
Hence (28) becomes

?u  Jd°u

ﬁ+W:0.

This is called Laplace equation in two dimensions.
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How to solve Laplace equation

The way of solving Laplace’s equation will depend upon the
geometry of the 2-D object we're solving it on. Let’s start out by
solving it on the rectangle givenby 0 < x < L,0<y < H. For
this geometry Laplace’s equation along with the four boundary
conditions will be,

’u  du
e oy2
uO,y) = gi(y) u(L,y)=gz(y),
u(x,0) = f1(x) u(x, H)="h(x).

= 0, (29)
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How to solve Laplace equation
Cont...

m |t is important to notice that we will not have any initial
conditions here.

m Both variables are spatial variables and each variable
occurs in a 2" order derivative and so we'll need two
boundary conditions for each variable.

m Moreover the partial differential equation is both linear and
homogeneous; the boundary conditions are only linear and
are not homogeneous.

m This creates a problem because separation of variables
requires homogeneous boundary conditions.

Department of Mathematics University of Ruhuna — Mathematical Modelling-1I[(AMT221p/IMT221p) 60/103



How to solve Laplace equation
Cont...

m To completely solve Laplace’s equation we're in fact going
to have to solve it four times. Each time we solve it only
one of the four boundary conditions can be non
homogeneous while the remaining three will be
homogeneous.

m The four problems are probably best shown with a quick
sketch so let’s consider the following sketch.
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How to solve Laplace equation
Cont...

ul(x,H)=0 uz(x,H):U
ity (O,y) =0
\
w(0y)=0| Py =0 Vi, =0 |m(Ly)=g(y)
‘\
“1(L=y)= 0

w(m0)= A7) (r0)=0




How to solve Laplace equation

Cont...

ua(x,H)=f2(x)

Vi =0

u3(x,0):0

4 (0.5)=2(y)

:q(x,H): i}

Vi, =0

1, (x,0)=0

uy (L,)




How to solve Laplace equation
Cont...

Now, once we solve all four of these problems the solution to
our original system, (29), will be,

u(x,y) = ui(x,y) + u2(x, y) + us(x, y) + ua(x, y).

Because we know that Laplace’s equation is linear and
homogeneous and each of the pieces is a solution to Laplace’s
equation then the sum will also be a solution. Also, this will
satisfy each of the four original boundary conditions. We'll
verify only the first one.

u(x,0) = uy(x,0) + u2(x,0) + us(x,0) + us(x,0) = fi(x).
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How to solve Laplace equation
Cont...

m Here the nonhomogeneous boundary condition will take
the place of the initial condition.

m We will apply separation of variables to the each problem
and find a product solution that will satisfy the differential

equation and the three homogeneous boundary conditions.

m Using the principle of superposition we’ll find a solution to
the problem and then apply the final boundary condition to
determine the value of the constant(s) that are left in the
problem.
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Example

Solve

’u  du
— 4 — = 0,
ox2  dy?

which satisfies the conditions

u(0,y)=u(l,y)=u(x,0)=0

and u(x,a) = sin n—TX
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Example

Solution
The PDE is
Pu  JFu
— +=— =0. 30
ax? - dy? (30)
Let
u(x,y) = X(x).Y(y). (31)
2 2
Putting the value of % and g—yg in (30) we have
XY+ XY" =0
X// Yll 2
x - Ty~
X" = —A2X or X"+A%X=0 (32)

Y’ = A2Y or Y'-A%Y=0 (33)
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Example
Solution = Cont...

By considering characteristic polynomial of (32), we get

m+A% = 0
m = =il
X = C€1CO0SAX + CosinAx.

By considering characteristic polynomial of (33), we get

m>-A%2 = 0
m = A
Y = c3eV + eV,
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Example
Solution = Cont...

Putting the values of X and Y in (31) we have

ux,y) = X(x).Y(y) (34)
u(x,y) = (c1cosAx+ casinAx).(cze™ + cae™). (35)

Putting x = 0 and u(0, y) = 0 in (35) we have

u(0,y) = (c1cosA0+ cpsinA0).(cze™ + cae™™V)
0 = ci.(cze™ +cie™)
cit = 0.
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Example
Solution = Cont...

Then (35) is reduced to

u(x,y) = casin Ax(cae™ + cae™V)

On putting x = I and u(/, y) = 0, we have

ully) =
0
Co
Al =
A

H

cosin Al(cze™ + cie™V)
casinAl(cse™ + cie™V)
0= sinAl=0=sinnn

nm
nm

T

(36)
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Example
Solution = Cont...

Now (36) becomes

. nNmx nny —nny
u(x,y) = ceasin - C3e T +cqeT ) (37)
On putting y = 0 and u(x,0) = 0 in (37) we have
. Nx nn0 —nn0
u(x,0) = cpsin - (03e I+ cq€7 1 )
. Nmtx
0 = cosin T.(Cg, + C4)
(03 + C4) = 0 or c3=-¢4.
(37) becomes
. Nmx nny —nny
u(x,y) = cacssin - (e‘l‘ - eT) (38)
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Example
Solution = Cont...

On putting y = a and u(x, a) = sin % in (38), we get

. Nx nna —nna
u(x,a) = coczsin T.(e/ —el
. nNx . Nix nna —nna
sin—= = cacssin T.(e/ —e’!
1
CC3 = @ e
eT —e I

Putting this value in (38) we have

nmy —nny
. nmxeT —el
U(XI y) - Sln I ef'ﬂLIa e—ﬂ[’/‘la
., nmy
_ nnx Sinn [
ulx,y) = sin —— e
sinh -

)
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Exercise

Solve
Pu Fu_
ox2  Jy2

which satisfies the conditions

0,

u(0,y) = u(m,y)=0forally,
ux,0) = k, 0<x<m.

and lim u(x,y)=0, O0<x<T.

y—00

Answer

u(x,y) = Z b,sinnxe™, k = Z b, sin nx.
n=1 n=1
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Chapter 5
Section 5.3

D’Alembert’s Method
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The wave equation

m The wave equation is second order linear hyperbolic PDE
that describes the propagation of variety of waves, such as
sound or water waves.

m Historically, the problem of a vibrating string such as that of
a musical instrument was studied by Jean le Rond
D’Alembert.

m He found a formula for general solution to the
one-dimensional wave equation.

m It is named after him as D’Alembert solutions.
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D’Alembert’s solutions

m The wave equation uy = c?uyy has the D’Alembert’s
solutions ¢(x — ct) + (x + ct), for some choices of the
functions ¢ and 1 to suit the given conditions.

m Such solutions are waves travelling at constant speed ¢ on
both directions along x-axis.

m To see how this is arrived; we need to do some
applications of the chain rule for partial derivatives.
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D’Alembert’s solutions
Cont...

Letv=x+ctand w=x—ct

u
ox
u
ox
u
ox

ou v ou ow
v ox ow dx
du du
W'(1)+Wv'(1)
ou_ o

v ow
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D’Alembert’s solutions
Cont...

d

d
av ' ow
Jd(duy  [d  d\[du
87(97) B (5*37/)(37)
Pu 9 (8u)Jr 0 (au)
ox? av\dx) Jw\dx
~d [du du Jd (du Jdu
W(W+8_w) a—w(xm—w)
?u QPu  du

= 57 " %5vow T o

= Uw+ 2va + Unww
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D’Alembert’s solutions
Cont...

Jdu

ot
Jdu

ot

ur =

#u
ot?

ou v u w
dv dt  Jw ot
uyC + UW(_C)

c(uy — uy)

2 lo(u - )]

2w

Cz[azu u u ]

v w2 “ovow

Department of Mathematics University of Ruhuna — Mathematical Modelling-1I[(AMT221p/IMT221p)

79/103



D’Alembert’s solutions
Cont...

Pu 0%
- e
alPu Pu L Pul _ L[Fu v, P
av:  Iw? avow | av:  Iw? ovow
2%u
2 -
4c vow 0
2%u
vow 0, ¢>0
UVW — O (39)
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D’Alembert’s solutions

Cont...
By integrating (39) with respect to w we get
adu
5 = (V) (40)

where f(v) is constant in respect of w.

Again integrating (40) with respect to v we get

u= [ v+ o(w) (@)
where ¢(w) is a constant in respect of v.
u = YP(v)+¢(w) wherey(v)= ff(v)dv

ulx,t) = yP(x+ct)+o(x—ct). (42)

This is D’Almbert’s solution of wave equation.
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D’Alembert’s solutions
Cont...

To determine ¢ and v, let us apply initial conditions. Suppose
we are given

u(x,0) = f(x)and
u(x,0) = 0

Differentiating (42) with respect to t, we get

% = —c¢'(x —ct)+ cy’(x + ct)
u(x,t) = —co’(x —ct)+ cy’(x + ct)
ui(x,0) = —co¢’(x—c0)+ cy’(x + c0)

0 = —o¢'(x)+cy'(x)

P'(x) = ¥'(x)
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D’Alembert’s solutions

Cont...

¢'(x) = ¥
o(x) = P(x)+b

Again substituting u(x,0) = f(x) and t = 0 in (42) we get

f(x)-b

b — constant

ct) + P(x + ct)
P(x)
P(x)

[#J( ) +b] +(x)
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D’Alembert’s solutions
Cont...

On putting the values of Y(x + ct) and ¢(x — ct) in (42), we get

ulx,t) = P(x+ct)+d(x—ct)
f(x+ct)y-b f(x—ct)+b
2 T 2

_ %Uu—cn+ax+an
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Example 1

Use D’Alembert’s method to find solutions for the PDE

36y = 49yy, when
y(x,0) = sinx
yt(x, 0) = 2.
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Example 1
Solution

36yt 49yyxx
49
Yt = %Yxx
5 49
Yt = CYxx = 36
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Example 1
Solution = Cont...

Let’s take two new independent variable as v = x + ct and
w = X — ct.

% dy dv  dy ow
ox  avox owox
ady dy dy

E 5, (1 + 501
ady dy  ady

x — ov  ow

J d 9

x  ov ' ow
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Example 1
Solution = Cont...

Py _ o (), 0 (9
ox? ov \ox

X
(W), 9 (W
- 8v(8v+&w)+8w(8v+aw
Py Py Py

N 87+28v8w+8v

= Yw + Yaow +2Yww
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Example 1
Solution = Cont...

Iy _ v Iy ow
ot ov ot  ow’ adt
d
a—}; = yC+ yw(-0C)

yvi = c(yv—yw)
P P)
S = lebe-ywl

= C[ (%—%)](yv—yw)

2|y | Py, Py
- [8v2+awz 2 vow
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Example 1
Solution = Cont...

2’y

o2

2|y Py 92_Y]
vz Iw? ovow
2%y

4C28v8w

2y

dvow

Yvw

P’y
27 V
¢ ox?
|5

B + =

0, ¢>0

2y
ow?

2y

ovow
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Example 1
Solution = Cont...

By integrating (43) with respect to w we get

Iy
Vi f(v) (44)

where f(v) is constant in respect of w.

Again integrating (44) with respect to v we get

y = ff(v)dv + p(w) (45)
where ¢(w) is a constant in respect of v.

y = ¢(v)+¢(w) where p(v)=f(v)dv
y(x,t) = o¢(x+ct)+y(x—ct).

This is D’Almbert’s solution of wave equation.
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Example 1
Solution = Cont...

To determine ¢ and v, let us apply initial conditions.

y(x,0)
yi(x,0)

= sinx and
= 2.

Differentiating with respect to t, we get

dy
at
yl‘(X/ t)
yt(X,O)

—c¢’(x —ct) + cy’(x + ct)
co’(x + ct) — cy’(x — ct)
c¢’(x + c0) — cy’(x — c0)
Z¢’(X) - cy’(x)

c
P(x) + §x+b
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Example 1
Solution = Cont...

Again substituting y(x,0) = sinx and t = 0 in () we get

y(x,t)
y(x,0)
sin x

sin x

y(x,t)

sin(x +ct) sin(x —ct)
2 2

N
+

+ 2t
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Exercise 1

A string of length [ is initially at rest in equilibrium position and
each of its points are given velocity.

ay 3 X
(8_t)t_ = bsin I

Find the displacement y(x, t).

Answer

nc
Z bp sin —X sin Tnt
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Chapter 5
Section 5.4

Method of characteristics
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About method of characteristics

m The method of characteristics is a technique for solving
first-order PDE.

m For a first-order PDE, the method of characteristics
discovers curves (called characteristic curves or just

characteristics) along which the PDE becomes an ODE.

m Once the ODE is found, it can be solved along the
characteristic curves and transformed into a solution for
the original PDE.
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Past paper 2011

Solve the initial value problem:
22U,
ax  dt

u(x,0) = Vx; x>0

using the method of characteristics.
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Past paper 2011

Solution

224 U
ox  dt
The aim of the method of characteristics is to solve the PDE by

finding curves in the x — t plane that reduce the equation into
an ODE.

— 0. (46)

In general, any curve in the x — t plane can be expressed in
parametric form by x = x(r), t = t(r), where r gives a measure
of the distance along the curve.

The curve starts at the initial point, x = xp, t = 0, when r = 0.
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Past paper 2011

Solution = Cont...

u(x, t) = u(x(r),t(r)) > uisa function of r.
Hence derivative of u with respect to r is

du Judx Jdudt

dar ~ oxdr @ atar
du dxdu dtdu
— = =4 == 47
dr ~ drox drat “7)
Compare (46) and (47)
du dx o dt
a0 T FT
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Past paper 2011

Solution = Cont...

dt
i 1=t =r+ kq (constant).

Sincewhenr=0,t=0= ky =0.
Therefore t =r.
du

T 0 = u = constant on characteristics curve.

u = F(Xo)
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Past paper 2011

Solution = Cont...

dx 5
a u
X

UPr + ko (constant).

Whenr =0, x = xg

Xo = ko
X = Ut+Xo
Xo = X-—Ut

Substituting for xg in F(xp), we obtain the implicit solution
u(x, t) = F(x — u?t),
where F is determined by given following initial conditions:
t=0, x=x9 and U= Xo. (48)
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Past paper 2011

Solution = Cont...

Thus, F(xp) = v/Xo-
Therefore u = Vx — tt.
Squaring both sides,
v = x-utt
x = U(1+1)

u = L,x>0,t>0.
V1+t
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Thank you !
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