
Mathematical Modelling-II
(AMT221β/IMT221β)

Department of Mathematics
University of Ruhuna

A.W.L. Pubudu Thilan

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 1/92



Chapter 4

Numerical Solutions of Systems of
Differential Equations

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 2/92



Chapter 4
Section 4.1

Systems of Differential Equations
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Why do we need systems of differential equations?

Upto now, we only discussed individual first order differential
equations.

But it’s quite rare that a situation in the real world is modeled
using only a single diffrential equation.

The reason is, there are several interplaying factors at work in
the evolution of something.
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Why do we need systems of differential equations?
Example

Suppose we are going to consider population dynamics.

It would be possible to model the size of a single population
using a single differential equation, making certain
assumptions about death and birth rates (namely, that they
are constant).

But in general, this won’t be the case: the death rate of a
prey species is dependant on the size of a predator population
and the size of the predator population will depend on the
number of prey.
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Why do we need systems of differential equations?
Example ⇒ Cont...

To be able to write down a model for the size of the prey
population, we need to know the predator population, and
vice versa.

This would then give us a system of two interlocked
differential equations.
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Why do we need systems of differential equations?
Example ⇒ Cont...

Here is an example of a system of first order, linear differential
equations.

dy1
dt

= y1 + 2y2

dy2
dt

= 5y1 + 5y2

We call a system like this coupled because we need to know what
y1 is to know what y2 is and vice versa.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 7/92



Chapter 4
Section 4.2

Higher Order Differential Equations
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Converting a higher order diffrential equation into a system

Any higher order linear diffrential equation can be written as a
system of first order differential equations.

Let’s see how this is done.
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Example 1

Write the following 2nd order differential equation as a system of
first order, linear differential equations.

3y ′′ − 7y ′ + y = 0 y(2) = 5 y ′(2) = −3.
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Example 1
Solution

We can convert second order differential equation into a system of
first order differential equations by defining two new variables as
follow:

x1 = y

x2 = y ′

If we differentiate both sides of these we get,

x ′1 = y ′ = x2

x ′2 = y ′′ =
7

3
y ′ − 1

3
y =

7

3
x2 −

1

3
x1.
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Example 1
Solution ⇒ Cont...

We can also convert the initial conditions over to the new variables.

x1(2) = y(2) = 5

x2(2) = y ′(2) = −3.

Putting all of this together gives the following system of
differential equations.

x ′1 = x2 x1(2) = 5

x ′2 =
7

3
x2 −

1

3
x1 x2(2) = −3.
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Example 2

Write the following 4th order differential equation as a system of
first order, linear differential equations.

y (4) + ty ′′′ − 5y ′′ − 2y ′ + y = 0.
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Example 2
Solution

We want to start by making an analogous change of variables as in
above Example 1. The only difference is that, since our equation in
this example is fourth order, we will need four new variables
instead of just two.

x1 = y

x2 = y ′

x3 = y ′′

x4 = y ′′′
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Example 2
Solution ⇒ Cont...

If we differentiate both sides of these we get,

x ′1 = y ′ = x2

x ′2 = y ′′ = x3

x ′3 = y ′′′ = x4

x ′4 = y (4) = −ty ′′′ + 5y ′′ + 2y ′ − y = −tx4 + 5x3 + 2x2 − x1.
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Example 2
Solution ⇒ Cont...

Therefore, given 4th order differential equation can be converted
into a system of first order, linear differential equations as follows:

x ′1 = x2

x ′2 = x3

x ′3 = x4

x ′4 = −tx4 + 5x3 + 2x2 − x1.
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Matrix differential equation

A differential equation is a mathematical equation for an
unknown function of one or several variables that relates the
values of the function itself and of its derivatives of various
orders.

A matrix differential equation contains more than one
function stacked into vector form with a matrix relating the
functions to their derivatives.
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Matrix differential equation
Cont...

For example, a simple matrix ordinary differential equation is

x′(t) = Ax(t)

where x(t) is n × 1 vector of functions of an underlying variable t,
x′(t) is the vector of first derivatives of these functions, and A is
an n × n matrix, of which all elements are constants.
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Example 1

Convert the following system to matrix from.

x ′1 = 5x1 − 7x2

x ′2 = −2x1 + 3x2
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Example 1
Solution

First we write the system as follow.(
x ′1
x ′2

)
=

(
5x1 − 7x2
−2x1 + 3x2

)
Now the right side can be written as a matrix multiplication,(

x ′1
x ′2

)
=

(
5 −7
−2 3

)(
x1
x2

)
x′ = Ax
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Example 2

Convert the system into matrix form.

x ′1 = x2 x1(2) = 5

x ′2 =
7

3
x2 −

1

3
x1 x2(2) = −3.
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Example 2
Solution

The system is then,(
x ′1
x ′2

)
=

(
0 1
7
3 −1

3

)(
x1
x2

)
x′ = Ax

The initial condition can also be written in matrix form as follows:

x(2) =

(
5
−3

)
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Chapter 4
Section 4.3

Euler’s Method for System of Differential
Equations
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Euler’s method

The Euler’s method can be used to obtain approximations to the
system of two first-order differential equations given below:

dx

dt
= g(t, x , y), t ∈ [a, b], x(a) = x0

dy

dt
= f (t, x , y), t ∈ [a, b], y(a) = y0

The Euler’s method for the above system is

ti = a+ ih

xi+1 = xi + hg(ti , xi , yi ) and

yi+1 = yi + hf (ti , xi , yi ) for i = 1, 2, · · · ,N − 1.
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Example 1

Apply Euler’s method to the first order system to compute
approximations for x(t) and y(t) at time t = 0.1 and t = 0.2 with
step size h = 0.1.

x ′ = −2tx + 3y2 x(0) = −1

y ′ = −3x2(1− y) y(0) = 2.
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Example 1
Solution

We are given that t0 = a = 0, x0 = −1, and y0 = 2.

Using Euler’s method we know that

ti = a+ ih

xi+1 = xi + hg(ti , xi , yi ) and

yi+1 = yi + hf (ti , xi , yi ) for i = 1, 2, · · · ,N − 1.

Considering i = 0 we have

t0 = a = 0

x1 = x0 + hg(t0, x0, y0) = −1 + 0.1(−2t0x0 + 3y20 ) = 0.2

y1 = y0 + hf (t0, x0, y0) = 2 + 0.1(−3x20 (1− y0)) = 2.3
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Example 1
Solution ⇒ Cont...

Considering i = 1 we have

t1 = a+ h = 0 + 0.1 = 0.1

x2 = x1 + hg(t1, x1, y1) ≈ 1.783

y2 = y1 + hf (t1, x1, y1) ≈ 2.3156
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Example 2

Consider the second order differential equation

y ′′ + 2y ′ + y = e−t ,

with initial conditions

y(0) = 1 and y ′(0) = 2.

Then by Euler’s method with step size of h = 0.25, find y(0.75).
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Example 2

First, the second order differential equation has to be converted
into two simultaneous first-order differential equations. Therefore,
we take y ′ = x . Then

y ′′ + 2y ′ + y = e−t

x ′ + 2x + y = e−t

x ′ = e−t − 2x − y

So the two simultaneous first order differential equations are

y ′ = x y(0) = 1

x ′ = e−t − 2x − y x(0) = 2.
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Example 2
Solution

Using Euler’s method with i = 0, t0 = 0, y0 = 1, and x0 = 2

t0 = a = 0

x1 = x0 + hg(t0, x0, y0) = 1

y1 = y0 + hf (t0, x0, y0) = 1.5

Using Euler’s method with i = 1, t1 = 0.25, y1 = 1.5, x1 = 1

t1 = 0.25

x2 = x1 + hg(t1, x1, y1) = 0.31970

y2 = y1 + hf (t1, x1, y1) = 1.75
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Example 2
Solution ⇒ Cont...

Using Euler’s method with i = 2, t2 = 0.5, y2 = 1.75,
x2 = 0.31970

t2 = 0.5

x3 = x2 + hg(t2, x2, y2) = −0.1260

y3 = y2 + hf (t2, x2, y2) = 1.8299
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Chapter 4
Section 4.4

Modified Euler’s Method for System of
Differential Equations
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Modified Euler’s method

The Modified Euler’s method can be used to obtain approximations
to the system of two first-order differential equations given below:

dx

dt
= g(t, x , y), t ∈ [a, b], x(a) = x0

dy

dt
= f (t, x , y), t ∈ [a, b], y(a) = y0
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Modified Euler’s method
Cont...

The Modified Euler’s method for the above system is

k1,x = hg(ti , xi , yi )

k1,y = hf (ti , xi , yi )

k2,x = hg(ti+1, xi + k1,x , yi + k1,y )

k2,y = hf (ti+1, xi + k1,x , yi + k1,y )

xi+1 = xi +
1

2
(k1,x + k2,x)

yi+1 = yi +
1

2
(k1,y + k2,y )
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Exercise

Apply the Modified Euler method to the system

dx

dt
= y x(0) = 0

dy

dt
= −x y(0) = 1

with h = 0.1.
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Chapter 4
Section 4.5

Fourth Order Runge-Kutta Method for
System of Differential Equations
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Fourth order Runge-Kutta method

The fourth order Runge-Kutta method can be used to obtain
approximations to the system of two first-order differential
equations given below:

dx

dt
= g(t, x , y), t ∈ [a, b], x(a) = x0

dy

dt
= f (t, x , y), t ∈ [a, b], y(a) = y0
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Fourth order Runge-Kutta method
Cont...

The fourth Order Runge-Kutta method for the above system is

k1,x = hg(ti , xi , yi )

k1,y = hf (ti , xi , yi )

k2,x = hg

(
ti +

h

2
, xi +

k1,x
2

, yi +
k1,y
2

)
k2,y = hf

(
ti +

h

2
, xi +

k1,x
2

, yi +
k1,y
2

)
k3,x = hg

(
ti +

h

2
, xi +

k2,x
2

, yi +
k2,y
2

)
k3,y = hf

(
ti +

h

2
, xi +

k2,x
2

, yi +
k2,y
2

)
k4,x = hg (ti + h, xi + k3,x , yi + k3,y )

k4,y = hf (ti + h, xi + k3,x , yi + k3,y )
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Fourth order Runge-Kutta method
Cont...

xi+1 = xi +
1

6
(k1,x + 2k2,x + 2k3,x + k4,x)

yi+1 = yi +
1

6
(k1,y + 2k2,y + 2k3,y + k4,y )
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Example

Let i1(t) and i2(t) are currents in a closed circuit at time t.
Suppose the switch in the circuit is closed at time t = 0. Then
i1(0) = 0 and i2(0) = 0. The system of equations for the circuit is
as follows:

i ′1 = −4i1 + 3i2 + 6 i1(0) = 0,

i ′2 = 0.6i ′1 − 0.2i2 i2(0) = 0.

Use the Runge-Kutta fourth order method with h = 0.1 to find
i1(0.1) and i2(0.1).
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Example
Solution

The above system can be rewritten as:

i ′1 = g(t, i1, i2) = −4i1 + 3i2 + 6

i ′2 = f (t, i1, i2) = 0.6i ′1 − 0.2i2

= 0.6(−4i1 + 3i2 + 6)− 0.2i2

= −2.4i1 + 1.6i2 + 3.6

with intial conditions

i1(0) = 0

i2(0) = 0.
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Example
Solution ⇒ Cont...

We will apply the Runge-Kutta method of order four to this system
with h = 0.1.

Since x0 = i1(0) = 0 and y0 = i2(0) = 0,

k1,x = hg(t0, x0, y0)

= 0.1g(0, 0, 0)

= 0.1[−4(0) + 3(0) + 6] = 0.6

k1,y = hf (t0, x0, y0)

= 0.1f (0, 0, 0)

= 0.1[−2.4(0) + 1.6(0) + 3.6] = 0.36
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Example
Solution ⇒ Cont...

k2,x = hg

(
ti +

h

2
, xi +

k1,x
2

, yi +
k1,y
2

)
= hg

(
t0 +

h

2
, x0 +

k1,x
2

, y0 +
k1,y
2

)
= 0.1g(0.05, 0.3, 0.18)

= 0.1[−4(0.3) + 3(0.18) + 6] = 0.534

k2,y = hf

(
ti +

h

2
, xi +

k1,x
2

, yi +
k1,y
2

)
= hf

(
t0 +

h

2
, x0 +

k1,x
2

, y0 +
k1,y
2

)
= 0.1f (0.05, 0.3, 0.18)

= 0.1[−2.4(0.3) + 1.6(0.18) + 3.6] = 0.3168
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Example
Solution ⇒ Cont...

Generating the remaining entries in a similar manner produces

k3,x = (0.1)g(0.05, 0.267, 0.1584) = 0.54072

k3,y = (0.1)f (0.05, 0.267, 0.1584) = 0.321264

k4,x = (0.1)g(0.1, 0.54072, 0.321264) = 0.4800912

k4,y = (0.1)f (0.1, 0.54072, 0.321264) = 0.28162944
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Example
Solution ⇒ Cont...

As a consequence

xi+1 = xi +
1

6
(k1,x + 2k2,x + 2k3,x + k4,x)

i1(0) = x1 = x0 +
1

6
(k1,x + 2k2,x + 2k3,x + k4,x)

= 0 +
1

6
[0.6 + 2(0.534) + 2(0.54072) + 0.4800912]

= 0.5382552

yi+1 = yi +
1

6
(k1,y + 2k2,y + 2k3,y + k4,y )

i2(0) = y1 = y0 +
1

6
(k1,y + 2k2,y + 2k3,y + k4,y )

= 0.3196263
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Exercise

Consider the second order differential equation

y ′′ + y ′ − 6y = 0

with initial conditions

y(0) = 1 and y ′(0) = 0.

Then by Runge-Kutta method with step size of h = 0.25, find
y(0.75).
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Chapter 4
Section 4.6

Predictor-Corrector Methods for System of
Differential Equations
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Predictor and corrector equations

Adams-bashforth and Adams-moulton methods can be used as a
pair to contruct a predictor-corrector method for a system
invloving two differential equations as follows:

x
(p)
i+1 = xi +

h

24
(55f (ti , xi , yi )− 59f (ti−1, xi−1, yi−1)

+37f (ti−2, xi−2, yi−2)− 9f (ti−3, xi−3, yi−3)),

y
(p)
i+1 = yi +

h

24
(55g(ti , xi , yi )− 59g(ti−1, xi−1, yi−1)

+37g(ti−2, xi−2, yi−2)− 9g(ti−3, xi−3, yi−3)),

x
(c)
i+1 = xi +

h

24
(9f (ti+1, x

(p)
i+1, y

(p)
i+1) + 19f (ti , xi , yi )

−5f (ti−1, xi−1, yi−1) + f (ti−2, xi−2, yi−2)),

y
(c)
i+1 = yi +

h

24
(9g(ti+1, x

(p)
i+1, y

(p)
i+1) + 19g(ti , xi , yi )

−5g(ti−1, xi−1,i−1 ) + g(ti−2, xi−2, yi−2)).
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Example

Use the Adams-Bashforth four-step and the Adams-Moulton
methods with step size h = 0.2 to find estimates for the solution of

x ′(t) = 2y(t) sin t, x(0) = 0

y ′(t) = x(t)− sin2 t − sin t, y(0) = 1

at t = 0.8.
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Example
Solution

The Runge-Kutta fourth order method can be used to approximate
required initial conditions.

The first row of the table came from the initial conditions, and the
remaining rows come from the application of the Runge-Kutta
fourth-order method. The last two columns use the functions
f (t, x , y) = 2y sin t and g(t, x , y) = x − sin2 t − sin t.

i ti xi yi fi gi
0 0.0 0.00000 1.00000 0.00000 0.00000
1 0.2 0.039483 0.98007 0.38942 -0.19866
2 0.4 0.15167 0.92107 0.71736 -0.38940
3 0.6 0.31885 0.82535 0.93205 -0.56461
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Example
Solution ⇒ Cont...

Using the Adams-Bashforth four-step method, we get

x
(p)
4 = x3 +

h

24
(55f3 − 59f2 + 37f1 − 9f0)

= 0.31885 +
0.2

24
(55(0.93205)− 59(0.71736)

+37(0.38942)− 9(0))

= 0.51341

y
(p)
4 = y3 +

h

24
(55g3 − 59g2 + 37g1 − 9g0)

= 0.82535 +
0.2

24
(55(−0.56461)− 59(−0.38940)

+37(−0.19866)− 9(0))

= 0.69677.
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Example
Solution ⇒ Cont...

Before correcting, we need values of the functions f and g at
t = 0.8. We’ll use our predicted values for this:

f4 = f (t4, x
(p)
4 , y

(p)
4 ) = f (0.8, 0.51341, 0.69677) = 0.99966

g4 = g(t4, x
(p)
4 , y

(p)
4 ) = g(0.8, 0.51341, 0.69677) = −0.71854.
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Example
Solution ⇒ Cont...

Correcting with the Adams-Moulton method we get

x
(c)
4 = x3 +

h

24
(9f4 + 19f3 − 5f2 + f1)

= 0.31885 +
0.2

24
(9(0.99966) + 19(0.93205)

−5(0.71736) + 0.38942)

= 0.51476

y
(c)
4 = y3 +

h

24
(9g4 + 19g3 − 5g2 + g1)

= 0.82535 +
0.2

24
(9(−0.71854) + 19(−0.56461)

−5(−0.38940)− 0.19886)

= 0.69663

Thus, x(0.8) ≈ 0.51476 and y(0.8) ≈ 0.69663.
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Chapter 4
Section 4.7

Analytical Solutions for Higher Order ODE
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The Existence and Uniqueness Theorem

Consider the nth order differential equation

y (n)(t) = f (t, y(t), y ′(t), · · · , y (n−1)(t)). (1)

Suppose t0 is a given initial point t = t0, and suppose
a0, a1, · · · , an−1 are given constants.

Then there is exactly one solution to the differential equation (1)
which satisfies the initial conditions.

y(t0) = a0, y ′(t0) = a1, y ′′(t0) = a2, · · · , y (n−1)(t0) = an−1. (2)
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The general solution

If we solve the differential equation (1), then we will end up with a
formula for the solution

y = y(t, c1, c2, c3, · · · , cn),

which contains a number of constants.

Sometimes the way we get the solution leaves the possibility that
there might be even more solutions than the ones we found.

If we can show that there actually aren’t any other solutions, then
our solution is the general solution.
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The superposition principle

Consider a linear homogeneous equation

y (n)(t) + p1(t)y
(n−1)(t) + p2(t)y

(n−2)(t) + · · ·+ pn(t)y(t) = 0. (3)

The superposition principle states that

if y1(t) and y2(t) are solutions of (3), then so is y1 + y2.

if y1(t) is a solution to (3), and if c is any constant, then
cy1(t) is also a solution of (3).
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The superposition principle
Remark

The superposition principle implies that if you have n solutions

y1(t), y2(t), · · · , yn(t)

then any linear combination

yc(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t)

is also a solution, as long as the c1, · · · cn are constants.
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The general solution and the Wronskian

If y1, · · · , yn are solutions to the homogeneous equation (3), then

yc(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t)

is the general solution of that equation if and only if

W (t0) =

∣∣∣∣∣∣∣∣∣
y1(t0) y2(t0) · · · yn(t0)
y ′1(t0) y ′2(t0) · · · y ′n(t0)

...
...

. . .
...

y
(n−1)
1 (t0) y

(n−1)
2 (t0) · · · y

(n−1)
n (t0)

∣∣∣∣∣∣∣∣∣ ̸= 0.

The determinant W (t0) is called the Wronskian of the solutions
y1, y2, · · · , yn.
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Abel’s formula

The Norwegian mathematician Nils Henrik Abel discovered a nice
formula which relates the Wronskian W (t) for different values of t.

Abel’s formula says

W (t1) = W (t0)e
−

∫ t1
t0

p1(t)dt

and he found this by first showing that the Wronskian satisfies a
first order differential equation

dW (t)

dt
= −p1(t)W (t),

known as Abel’s differential equation.
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Example 1

Suppose you are given

y1(x) = ex , y2(x) = e−x , y3(x) = sinh x , y4(x) = cosh x ,

as solutions of the fourth order differential equation y (4) − y = 0.

(a) Use the superposition principle to write a solution for the
above differential equation.

(b) Could this be the general solution?
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Example 1
Solution

(a) The superposition principle tells us that

y(x) = c1e
x + c2e

−x + c3 sinh x + c4 cosh x ,

is a solution for any choice of the constants c1, · · · , c4.
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Example 1
Solution ⇒ Cont...

(b) To answer this question we compute the Wronskian

W (x) =

∣∣∣∣∣∣∣∣
y1(x) y2(x) y3(x) y4(x)
y ′1(x) y ′2(x) y ′3(x) y ′4(x)
y ′′1 (x) y ′′2 (x) y ′′3 (x) y ′′4 (x)
y ′′′1 (x) y ′′′2 (x) y ′′′3 (x) y ′′′4 (x)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
ex e−x sinh x cosh x
ex −e−x cosh x sinh x
ex e−x sinh x cosh x
ex −e−x cosh x sinh x

∣∣∣∣∣∣∣∣
The first and third rows in this determinant are equal, so the
conclusion is W (x) = 0.

So the solution is not the general solution.
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Example 2

Suppose you are given

y1(x) = ex , y2(x) = e−x , y3(x) = sin x , y4(x) = cos x

as solutions of the fourth order differential equation y (4) − y = 0.

(a) Use the superposition principle to write a solution for the
above differential equation.

(b) Could this be the general solution?
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Example 2
Solution

(a) The superposition principle tells us that

y(x) = c1e
x + c2e

−x + c3 sin x + c4 cos x ,

is a solution for any choice of the constants c1, · · · , c4.
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Example 2
Solution ⇒ Cont...

(b) To answer this question we compute the Wronskian

W (x) =

∣∣∣∣∣∣∣∣
y1(x) y2(x) y3(x) y4(x)
y ′1(x) y ′2(x) y ′3(x) y ′4(x)
y1(x)

′′ y ′′2 (x) y ′′3 (x) y ′′4 (x)
y1(x)

′′′ y ′′′2 (x) y ′′′3 (x) y ′′′4 (x)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
ex e−x sin x cos x
ex −e−x cos x − sin x
ex e−x − sin x − cos x
ex −e−x − cos x sin x

∣∣∣∣∣∣∣∣
= 8

This time the Wronskian is not zero, so

y(x) = c1e
x + c2e

−x + c3 sin x + c4 cos x ,

is the general solution.
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Section 4.7
Subsection 4.7.1

Second Order Linear Differential Equations
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Different forms of second order ODEs

1 y ′′ + p(t)y ′ + q(t)y = g(t) ⇐ second order linear equations

2 y ′′ + p(t)y ′ + q(t)y = 0 ⇐ second order linear homogeneous
equations

3 ay ′′ + by ′ + cy = 0, a ̸= 0 ⇐ second order linear
homogeneous equations that contain constant coefficients

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 68/92



Linear independence

The Wronskian of two functions y1 and y2 is given by the
determinant:

W (y1, y2)(t) =

∣∣∣∣y1(t) y2(t)
y ′1(t) y ′2(t)

∣∣∣∣ = y1(t)y
′
2(t)− y2(t)y

′
1(t).

It can be shown that if the Wronskian of two functions is nonzero
on an interval then the two functions are linearly independent on
the interval.
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Linear independence
Cont...

If y1 and y2 are two solutions of the equation,
y ′′ + p(t)y ′ + q(t)y = 0, then

W (y1, y2)(t) = W (y1, y2)(t0) e
−

∫ t
t0
p(x)dx

.

If W (y1, y2)(t) ̸= 0 for every t then y1 and y2 are linear
independent.

The set {y1, y2} is called Fundamental Solution Set.

Then, the general solution y is given by y = c1y1 + c2y2.
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Linear independence
Cont...

W (y1, y2)(t) is nonzero
⇕

y1, y2 are linearly independent
⇕

y1, y2 are Fundamental Solutions Set
⇕

y = c1y1 + c2y2 is a general solution of the equation
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Example

Let y1 be the solution of the IVP

y ′′ + (2x − 1)y ′ + sin(ex)y = 0, y(0) = 1 y ′(0) = −1

and y2 be the solution of the IVP

y ′′ + (2x − 1)y ′ + sin(ex)y = 0, y(0) = 2 y ′(0) = 1.

(a) Find the Wronskian of y1 and y2.

(b) Deduce general solution to the above IVP.
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Example
Solution

W (y1, y2)(x) = W (y1, y2)(x0) e
−

∫ x
x0

p(t)dt

W (y1, y2)(x0) =

∣∣∣∣y1(0) y2(0)
y ′1(0) y ′2(0)

∣∣∣∣ = ∣∣∣∣ 1 2
−1 1

∣∣∣∣ = 3

W (y1, y2)(x) = 3 e
−

∫ x
x0=0(2t−1)dt

= 3e−x2+x ̸= 0

W (y1, y2)(x) ̸= 0 ⇒ y1 and y2 are linearly independent.

{y1, y2} is the Fundamental Solution Set.

Therefore, general solution is y = c1y1 + c2y2.
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The characteristic polynomial

Consider the second order linear homogeneous equation:

ay ′′ + by ′ + cy = 0. (4)

Let y = ert be a solution of (4), for some unknown constant r .

Substitute y , y ′ = rert , and y ′′ = r2ert into (4), we get

ay ′′ + by ′ + cy = 0

ar2ert + brert + cert = 0

ert(ar2 + br + c) = 0

Since ert is never zero, the above equation is satisfied.

This polynomial, ar2 + br + c = 0, is called the characteristic
polynomial of the differential equation (4).
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Example 1

Find the unique particular solution for the second order differential
equation:

y ′′ + 5y ′ + 4y = 0, y(0) = 1, y ′(0) = −7.
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Example 1
Solution

The characteristic equation is r2 +5r +4 = (r +1)(r +4) = 0, the
roots of the polynomial are r = −1 and −4.

The general solution is then y = c1e
−t + c2e

−4t .

The values of c1 and c2 can be found by solving for c1 and c2
using the initial conditions.

The solution is c1 = −1, and c2 = 2.

Therefore, the particular solution is y = −e−t + 2e−4t .
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Example 2

Find the general solution of

y ′′ + 4y ′ + 4y = 0.
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Example 2
Solution

In this case our characteristic equation is r2 + 4r + 4 = 0 which
has only one root r1 = −2. And so according to theory in Chapter
2, a fundamental set of solutions are given by y1 = e−2x and
y2 = xe−2x , and so the general solution is given by:

y = c1e
−2x + c2xe

−2x .
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Chapter 4
Section 4.8

Finite Difference Method for Linear ODE
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Initial value problem vs. boundary value problem

All the initial conditions in an initial value problem must be
taken at the same point t0.

For example y(t0) = y0 and y ′(t0) = y ′0 at the same point t0.

The sets of conditions above where the values are taken at
different points are known as boundary conditions.

A boundary value problem where a differential equation is
bundled with (two or more) boundary conditions does not
have the existence and uniqueness guarantee.
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Finite difference method

In the finite difference method we divide the range of
integration (a, b) into n − 1 equal subintervals of length h
each, as shown in Figure.

The values of the numerical solution at the mesh points are
denoted by yi , i = 1, 2..., n; the two points outside (a, b) will
be explained shortly.
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Finite difference method
Cont...

We then make two approximations:

1 The derivatives of y in the differential equationare replaced by
the finite difference expressions. It is common practice to use
the first central difference approximations.

dy(t)

dt
≈ y(t + h)− y(t − h)

2h
⇐ Central difference

d2y(t)

dt2
≈ y(t + h)− 2y(t) + y(t − h)

(h)2
⇐ Central difference

2 The differential equation is enforced only at the mesh points.
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Finite difference method
Cont...

After following above two steps, the differential equations will be
replaced by n simultaneous algebraic equations, the unknowns
being yi , i = 1, 2, ....n.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 83/92



Finite difference method
Cont...

Consider the second-order differential equation

y ′′ = f (x , y , y ′)

with the boundary conditions

y(a) = α or y ′(a) = α

y(b) = β or y ′(b) = β
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Finite difference method
Cont...

Approximating the derivatives at the mesh points by finite
differences, the problem becomes

yi+1 − 2yi + yi−1

h2
= f

(
xi , yi ,

yi+1 − yi−1

2h

)
i = 1, · · · , n.(5)

y1 = α or
y2 − y0
2h

= α (6)

yn = β or
yn+1 − yn−1

2h
= β (7)
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Finite difference method
Cont...

Note the presence of y0 and yn+1, which are associated with points
outside the solution domain (a, b). This ”spillover” can be
eliminated by using the boundary conditions. But before we do
that, let us rewrite Eqs. (5) as

y0 − 2y1 + y2 − h2f

(
x1, y1,

y2 − y0
2h

)
= 0 (8)

yi−1 − 2yi + yi+1 − h2f

(
xi , yi ,

yi+1 − yi−1

2h

)
= 0 (9)

for i = 2, 3, · · · , n − 1

yn−1 − 2yn + yn+1 − h2f

(
xn, yn,

yn+1 − yn−1

2h

)
= 0 (10)
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Finite difference method
Cont...

The boundary conditions on y are easily dealt with: Eq. (8) is
simply replaced by y1 − α = 0 and and Eq. (10) is replaced by
yn − β = 0. If y ′ are prescribed, we obtain from Eqs. (6,7)
y0 = y2 − 2hα and yn+1 = yn−1 + 2hβ, which are then substituted
into Eqs. (8) and (10), respectively. Hence we finish up with n
equations in the unknowns yi , i = 1, 2, · · · , n.
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Finite difference method
Cont...

y1 − α = 0 if y(a) = α

−2y1 + 2y2 − h2f (x1, y1, α)− 2hα = 0 if y ′(a) = α (11)

yi−1 − 2yi + yi+1 − h2f

(
xi , yi ,

yi+1 − yi−1

2h

)
= 0 (12)

for i = 2, 3, · · · , n − 1

yn − β = 0 if y(b) = β

2yn−1 − 2yn − h2f (xn, yn, β) + 2hβ = 0 if y ′(b) = β (13)
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Example

Write down equations for the following linear boundary value
problem using n = 11:

y ′′ = −4y + 4x y(0) = 0 y ′(π/2) = 0.
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Example
Solution

In this case α = 0 (applicable to y), β = 0 (applicable to y ′) and
f (x , y , y ′) = −4y + 4x . Hence equations are

y1 = 0

yi−1 − 2yi + yi+1 − h2(−4yi + 4xi ) = 0,

for i = 2, 3, ..., 10

2y10 − 2y11 − h2(−4y11 + 4x11) = 0
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Example
Solution ⇒ Cont...



1 0
1 −2 + 4h2 1

1 −2 + 4h2 1
2 −2 + 4h2





y1
y2
.
.
.

y10
y11


=



0
4h2x2

.

.

.
4h2x10
4h2x11


By solving the system, we can find y1, y2, · · · , y11.
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Thank you !
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