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Introduction

Ordinary differential equations occur in many scientific
disciplines, for instance in physics, chemistry, biology, and
economics.

But most of those differential equations cannot be solved
analytically.

However, a numeric approximation to the solution is often
good enough to solve those differential equations.

The algorithms we discuss here can be used to compute
such numerical approximations.
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Analytical vs numerical solutions

An analytical solution of an ODE is a formula y(t), that
we can evaluate, differentiate, or analyze in any way we
want.

A numerical solution of an ODE is simply a table of
absciss and approximate values (tk , yk ) that approximate
the value of an analytical solution.

Fig: Analytical vs numerical solutions
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Explicit and implicit methods

Explicit and implicit methods are approaches used in
obtaining numerical solutions of time-dependent ordinary
and partial differential equations.
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Explicit and implicit methods
Explicit methods

Explicit methods calculate the state of a system at a later
time from the state of the system at the current time.

Mathematically, if y(t) is the current system state and
y(t +∆t) is the state at the later time (∆t is a small time
step) then, for an explicit method

y(t +∆t) = f(y(t))

to find y(t +∆t).
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Explicit and implicit methods
Implicit methods

The implicit methods find a solution by solving an equation
involving both the current state of the system and the later
one.

For an implicit method one solves an equation

g(y(t), y(t +∆t)) = 0

to find y(t +∆t).
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Initial value problems

An initial value problem (IVP) is a differential equation
which describes something that changes by specifying an
initial state, and giving a rule for how it changes over time.

Eg:

dy
dt

= 5 − t , y(0) = −2.

Thus, a simple IVP would state that at time t = 0, the value
of y is -2, and that thereafter, y changes according to the

rule
dy
dt

= 5 − t .
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The errors in numerical approximations

Any approximation of a function necessarily allows a
possibility of deviation from the exact value of the function.

Error is the term used to denote difference between exact
solution and numerical approximation.

Error occurs in an approximation for several reasons.
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The errors in numerical approximations
Truncation error

In numerical analysis, truncation error is the error made by
truncating an infinite sum and approximating it by a finite
sum.

For instance,

sin x = x − x3

3!
+

x5

5!
− x7

7!
.....

If we approximate the sine function by the first two

non-zero term of its Taylor series, as in sin(x) ≈ x − 1
6

x3 for
small x, the resulting error is a truncation error.

The only way to completely avoid truncation error is to use
exact calculations.
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The errors in numerical approximations
Local truncation error

The local truncation error of a numerical method is error
made in a single step.

It is the difference between the numerical solution after one
step, y1, and the exact solution at time t1 = t0 + h.

Fig: Local truncation error
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The errors in numerical approximations
Global truncation error

Global truncation error is the amount of truncation error
that occurs in the use of a numerical approximation to
solve a problem.

The global truncation error is the cumulative effect of the
local truncation errors committed in each step.
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Chapter 3
Section 3.1

Euler’s Method
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About Euler’s method

The Euler’s method is the most basic explicit method.

It was named after Leonhard Euler.

It is a first-order numerical procedure for solving ordinary
differential equations (ODEs) with a given initial value.
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About Euler’s method
Cont...

The Euler’s method is used to obtain an approximation to
the initial-value problem

dy
dt

= f(t , y), a ≤ t ≤ b , y(a) = α.

The approximations to y(t) will be generated at various
values, called mesh points, in the interval [a, b].
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Set up an equally-distributed mesh

We first make the stipulation that the mesh points are
equally distributed throughout the interval [a, b].

This condition is ensured by choosing a positive integer N
and selecting the mesh points

ti = a + ih, for each i = 0, 1, 2, ...,N.

The common distance between the points

h = (b − a)/N = ti+1 − ti

is called the step size.
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Use Taylor’s theorem to derive Euler’s method

Suppose that y(t), the unique solution to

dy
dt

= f(t , y), a ≤ t ≤ b , y(a) = α

has two continuous derivatives on [a, b], so that for each
i = 0, 1, 2, ...,N − 1,

y(ti+1) = y(ti) + (ti+1 − ti)y′(ti) +
(ti+1 − ti)2

2
y′′(ξi)

for some number ξi in (ti , ti+1).
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Use Taylor’s theorem to derive Euler’s method
Cont...

Because h = ti+1 − ti , we have

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi)

and, because y(t) satisfies the differential equation y′ = f(t , y),
we write

y(ti+1) = y(ti) + hf(ti , y(ti)) +
h2

2
y′′(ξi).
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Euler’s method

Euler’s method constructs yi ≈ y(ti), for each i = 1, 2, ...,N, by
deleting the remainder term. Thus Euler’s method is

y0 = α

yi+1 = yi + hf(ti , yi), for each i = 0, 1, ...,N − 1.
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Example 1

Using Euler’s method, obtain the solution of

y′ = x − y with y(0) = 1,

at x = 0.6. Use a step size of h = 0.2.
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Example 1
Solution

Here f(x , y) = x − y, x0 = 0, y0 = 1 and h = 0.2. We have to
find out the values of y at x1 = 0.2, x2 = 0.4 and x3 = 0.6.

Now, f(x0, y0) = f(0,1) = 0 − 1 = −1.

By Euler’s method, we have

y1 = y0 + hf(x0, y0)

= 1 + (0.2)(−1)
= 0.8
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Example 1
Solution⇒Cont...

For the next step,

f(x1, y1) = f(0.2, 0.8)
= 0.2 − 0.8
= −0.6

Therefore

y2 = y1 + hf(x1, y1)

= 0.8 + (0.2)(−0.6)
= 0.68
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Example 1
Solution⇒Cont...

We get, for x2 = 0.4,

f(x2, y2) = f(0.4, 0.68)
= −0.28

Therefore

y3 = y2 + hf(x2, y2)

= 0.68 + (0.2)(−0.28)
= 0.624
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Example 1
Solution⇒Cont...

Now, tabulating the solution, we have

x 0 0.2 0.4 0.6
y 1 0.8 0.68 0.624
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Example 2

Compute the first four steps in the Eulers method
approximation to the solution of

y′ = y1/2t2,

with y(0) = 1, using the step size h = 0.5. Compare the results
with the actual solution to the initial value problem.
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Example 2
Solution

Here f(t , y) = y1/2t2, t0 = 0, y0 = 1 and h = 0.5. We have to
find out the values of y at t1 = 0.5, t2 = 1.5 and t3 = 2.0.

By Euler’s method, we have

y1 = y0 + hf(t0, y0)

y1 = y0 + hf(0,1)
= 1 + (0.5)11/202

= 1

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 26/148



Example 2
Solution⇒Cont...

For the next step,

y2 = y1 + hf(t1, y1)

y2 = 1 + (0.5)f(0.5, 1)
= 1.1250

For the next step,

y3 = y2 + hf(t2, y2)

y3 = 1.1250 + (0.5)f(1,1.1250)
= 1.6553
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Example 2
Solution⇒Cont...

For the next step,

y4 = y3 + hf(t3, y3)

y4 = 1.6553 + (0.5)f(1.5, 1.6553)
= 3.1027
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Example 2
Solution⇒Cont...

The DE has exact solution y(t) =
(t3/3 + 2)2

4
. Computing the

solution at the discrete t-values 0, 0.5, 1, 1.5, and 2 we have
the following table of comparisons between the approximate
and exact values as well as error values.

tk Approx yk Exact yk Error
0 1 1 0

0.5 1 1.1289 0.1289
1.0 1.125 2.2500 1.1250
1.5 1.6553 7.2227 5.5674
2.0 3.1027 25.0000 21.8973
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Local truncation error for Euler’s method

The local truncation error of the Euler’s method is the difference
between the numerical solution after one step, y1, and the exact
solution at time t1 = t0 + h. The numerical solution is given by

y1 = y0 + hf(t0, y0).

For the exact solution, we use the Taylor expansion

y(t0 + h) = y(t0) + hy′(t0) +
1
2

h2y′′(t0) + O(h3).
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Local truncation error for Euler’s method
Cont...

The local truncation error (LTE) introduced by the Euler’s
method is given by the difference between these equations:

LTE = y(t0 + h) − y1 =
1
2

h2y′′(t0) + O(h3).

This result is valid if y has a bounded third derivative.

This shows that for small h, the local truncation error is
approximately proportional to h2.

This makes the Euler’s method less accurate (for small h) than
other higher-order techniques which we shall discuss later in
this Chapter.
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Global truncation error for Euler’s method

The global truncation error is the error at a fixed time t,
after however many steps the methods needs to take to
reach that time from the initial time.

The number of steps is easily determined to be (t − t0)/h,
which is proportional to 1/h, and the error committed in
each step is proportional to h2.

Thus, it is to be expected that the global truncation error
will be proportional to h.
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Remark 1

The Euler’s method is a first-order method, which means
that the local error (error per step) is proportional to the
square of the step size, and the global error (error at a
given time) is proportional to the step size.
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Remark 2

For any method, the Global Truncation Error (GTE) is one
power lower in h than the Local Truncation Error (LTE).

We have shown that the LTE of Euler’s method is O(h2).

So the GTE for Euler’s method should be O(h).

By the order of a method, we mean the power of h in the
GTE.

Thus the Euler’s method is a first order method.
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Chapter 3
Section 3.2

Modified Euler Method
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About Modified Euler method

The Euler’s method can easily be implemented.

But its accuracy is very low.

So an improvement over this is to take the arithmetic
average of the slopes at ti and ti+1 (that is, at the end
points of each sub-interval).

The scheme so obtained is called Modified Euler method
and its order is two (O(h2)).

It works first by approximating a value to yi+1 and then
improving it by making use of average slope.
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About Modified Euler method
Cont...

yi+1 = yi +
h
2
(y′i + y′i+1)

= yi +
h
2
(f(ti , yi) + f(ti+1, yi+1))

If Euler’s method is used to find the first approximation of yi+1
then

yi+1 = yi +
h
2
(f(ti , yi) + f(ti+1, yi + hf(ti , yi))).
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Example

(a) Use the Modified Euler method to obtain approximations to
the solution of the intial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

with h = 0.2.

(b) If the exact solution is y = t2 + 2t + 1 − 1
2

et , then calculate
error in each step.
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Example
Solution

y1 = y0 +
h
2
(f(t0, y0) + f(t1, y1))

y1 = y0 +
h
2
(f(t0, y0) + f(t1, y0 + hf(t0, y0)))

= 0.5 + 0.1(f(0,0.5) + f(0.2, 0.5 + 0.2(0.5 − 0 + 1))
= 0.5 + 0.1(f(0,0.5) + f(0.2, 0, 8))
= 0.5 + 0.1((0.5 − 0 + 1) + (0.8 − 0.22 + 1))
= 0.826

y2 = y1 +
h
2
(f(t1, y1) + f(t2, y2))

y2 = y1 +
h
2
(f(t1, y1) + f(t2, y1 + hf(t1, y1)))

= 1.2069
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Example
Solution⇒Cont...

Tabulating the solution, we have

Exact Modified Euler Error
ti y(ti) Method (yi) |y(ti) − yi |

0.0 0.5000000 0.5000000 0.0000000
0.2 0.8292986 0.8260000 0.0032986
0.4 1.2140877 1.2069200 0.0071677
0.6 1.6489406 1.6372424 0.0116982
0.8 2.1272295 2.1102357 0.0169938
1.0 2.6408591 2.6176876 0.0231715
. . . .
. . . .
. . . .

2.0 5.3054720 5.2330546 0.0724173
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Chapter 3
Section 3.3

Heun’s Method
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About Heun’s method

Heun’s method is a second order (O(h2)) numerical
procedure for solving ordinary differential equations
(ODEs) with a given initial value.

It is named after Karl Heun.
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About Heun’s method
Cont...

The difference equation for the method is:

y0 = α

yi+1 = yi +
h
4
(f(ti , yi) + 3f(ti +

2
3

h, yi +
2
3

hf(ti , yi)))

for each i = 0, 1, 2, ...,N − 1.
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Example

(a) Use the Heun’s method to obtain approximations to the
solution of the intial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

with h = 0.2.

(b) If the exact solution is y = t2 + 2t + 1 − 1
2

et , then calculate
error in each step.
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Example
Solution

h = 0.2 t0 = 0 y0 = 0.5

y1 = y0 +
h
4
(f(t0, y0) + 3f(t0 +

2
3

h, y0 +
2
3

hf(t0, y0)))

y1 = 0.8273

y2 = y1 +
h
4
(f(t1, y1) + 3f(t1 +

2
3

h, y1 +
2
3

hf(t1, y1)))

y2 = 1.2098
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Example
Solution⇒Cont...

Tabulating the solution, we have

Exact Heun’s Error
ti y(ti) Method (yi) |y(ti) − yi |

0.0 0.5000000 0.5000000 0.0000000
0.2 0.8292986 0.8267333 0.0019653
0.4 1.2140877 1.2098800 0.0042077
0.6 1.6489406 1.6421869 0.0067537
0.8 2.1272295 2.1176014 0.0096281
1.0 2.6408591 2.6280070 0.0128521

. . . .

. . . .

. . . .
2.0 5.3054720 5.2712645 0.0342074

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 46/148



Chapter 3
Section 3.4

Runge-Kutta Methods
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About Runge-Kutta methods

The Runge-Kutta methods are an important family of
implicit and explicit iterative methods for the approximation
of solutions of ordinary differential equations.

These techniques were developed by the German
mathematicians C. Runge and M. W. Kutta.
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About Runge-Kutta methods
Cont...

Both Modified Euler method and Heun’s method can be
seen as extensions of the Euler method into two-stage
second-order Runge-Kutta methods.

The Runge-Kutta method of order three is not generally
used.

The most common Runge-Kutta method in use is of order
four.
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Fourth order Runge-Kutta method

The difference equation form is:

y0 = α

k1 = hf(ti , yi)

k2 = hf
(
ti +

h
2
, yi +

1
2

k1

)
k3 = hf

(
ti +

h
2
, yi +

1
2

k2

)
k4 = hf(ti+1, yi + k3)

yi+1 = yi +
1
6
(k1 + 2k2 + 2k3 + k4)

for each i = 0, 1, 2, ...,N − 1.
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Remark

The method has local truncation error (O(h5)).

The reason for introducing the notaton k1, k2, k3, k4 into the
method is to eliminate the need for successive nesting in
the second variable of f(t , y).
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Example

(a) Use the Runge-Kutta method of order four to obtain
approximations to the solution of the intial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

with h = 0.2.

(b) If the exact solution is y = t2 + 2t + 1 − 1
2

et , then calculate
error in each step.
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Example
Solution

t0 = 0 y0 = 0.5
k1 = hf(t0, y0)

= 0.2f(0,0.5) = 0.3

k2 = hf
(
t0 +

h
2
, y0 +

1
2

k1

)
= 0.2f

(
0 +

0.2
2
, 0.5 +

1
2

0.3
)
= 0.328

k3 = hf
(
t0 +

h
2
, y0 +

1
2

k2

)
= 0.2f

(
0 +

0.2
2
, 0.5 +

1
2

0.328
)
= 0.3308

k4 = hf(t1, y0 + k3) = 0.2f(0.2, 0.5 + 0.3308) = 0.35816
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Example
Solution⇒

y1 = y0 +
1
6
(k1 + 2k2 + 2k3 + k4)

= 0.5 +
1
6
(0.3 + 2 × 0.328 + 2 × 0.3308 + 0.35816)

= 0.8292933
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Example
Solution⇒Cont...

Tabulating the solution, we have

Exact Runge-Kutta Error
ti y(ti) method (yi) |y(ti) − yi |

0.0 0.5000000 0.5000000 0.0000000
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
. . . .
. . . .
. . . .

2.0 5.3054720 5.3053630 0.0001089
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Remark 1

The main computational effort in applying the Runge-Kutta
methods is the evaluation of f .

In the second-order methods, the cost is two functional
evaluations per step.

The Runge-Kutta method of order four requires 4
evaluations per step.

This is why the less order methods with smaller step size
are used in preference to the higher order methods using a
larger step size.
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Remark 2

The Runge-Kutta methods of order four requires four
evaluations per step, so it should give more accurate
answer than Euler’s method with one-fourth the step size if
it is to be superior.

Similarly, if the Runge-Kutta method of order four is to be
superior to the second-order Runge-Kutta methods, it
should give more accuracy with step size h than a
second-order method with step size 1

2h, because the
fourth-order method requires twice as many evaluations
per step.

An illustration of the superiority of the Runge-Kutta
fourth-order method by this measure is shown in the
following example.
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Example

For the problem

y′ = y − t2 + 1. 0 ≤ t ≤ 2, y(0) = 5.

Compare Euler’s method with h = 0.025, the Modified Euler
method with h = 0.05, and Runge-Kutta method with h = 0.1 at
the common mesh points of these methods 0.1, 0.2, 0.3, 0.4
and 0.5.
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Example
Solution

Exact Euler Modified Euler Runge-Kutta order
ti y(ti) h = 0.025 h = 0.05 four h = 0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983

. . . . .

. . . . .
0.5 1.4256394 1.4147264 1.4250141 1.4256384
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Chapter 3
Section 3.5

Picard’s Method
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About Picard’s method

There are some differential equation which cannot be
solved by one of the standard methods known so far.

Picard’s iteration is a constructive procedure for
establishing the existence of a solution to a differential
equation y′ = f(t , y) that passes through the point (t0, y0).

Picard’s method converts the differential equation into an
equation involving integrals, which is called an integral
equation.
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Integral equation in Picard’s method

Consider the differential equation
dy
dt

= f(t , y), y(t0) = y0. (1)

Integrating this equation, we get

dy = f(t , y)dt∫ t

t0
dy =

∫ t

t0
f(t , y)dt

y(t) − y(t0) =

∫ t

t0
f(t , y)dt

y(t) = y(t0) +
∫ t

t0
f(t , y)dt = y0 +

∫ t

t0
f(t , y)dt (2)

This is an integral equation and hence the problem of solving
differential equation (1) has been reduced to solve the integral
equation (2).
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Integral equation in Picard’s method
Cont...

Since the information concerning the expression of y in
terms of t is absent, the integral or the R.H.S. of (2) cannot
be evaluated.

Hence the exact value of y cannot be obtained.

Therefore we determine a sequence of approximations to
the solution integral on the right of (2).
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Integral equation in Picard’s method
Cont...

For the first approximation y1(t) to the solution, we put y = y0 in
f(t , y) and obtain

y1(t) = y0 +

∫ t

t0
f(t , y0)dt .

Similarly

y2(t) = y0 +

∫ t

t0
f(t , y1)dt

y3(t) = y0 +

∫ t

t0
f(t , y2)dt

y4(t) = y0 +

∫ t

t0
f(t , y3)dt

and so on.
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Integral equation in Picard’s method
Cont...

Proceeding in this way, the (n + 1)th approximation yn+1(t) is
given by

yn+1(t) = y0 +

∫ t

t0
f(t , yn)dt .
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Remark

Picard’s method gives us a sequence of approximations
y1, y2, y3, ..., yn.

This sequence {yn}n = 1, 2, 3, ... converges to exact
solution provided that the function f(t , y) is bounded in
some region in the neighborhood of (t0, y0) and satisfies
the Lipschits condition namely there exists a constant
K such that |f(t , y) − f(t , y)| ≤ K |y − y |, for all t .
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Example 1

Apply Picard’s method to solve the following initial value
problem up to third approximation:

dy
dt

= 2y − 2t2 − 3, y(0) = 2.
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Example 1
Solution

t0 = 0 y0 = y(0) = 2 f(t , y) =
dy
dt

= 2y − 2t2 − 3

Therefore by Picard’s method we get

y1(t) = y0 +

∫ t

t0
f(t , y0)dt

y1(t) = 2 +

∫ t

0
(2y0 − 2t2 − 3)dt

= 2 +

∫ t

0
(4 − 2t2 − 3)dt

= 2 +
[
t − 2

3
t3

]t

0
= 2 − 2

3
t3 + t .

Thus first approximation is y1(t) = y1 = 2 − 2
3

t3 + t .
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Example 1
Solution⇒Cont...

The second approximation is

y2(t) = y0 +

∫ t

t0
f(t , y1)dt

y2(t) = 2 +

∫ t

0

[
2
(
2 − 2

3
t3 + t

)
− 2t2 − 3

]
dt

= 2 + t + t2 − 2
3

t3 − t4

4
.
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Example 1
Solution⇒Cont...

Third approximation is

y3(t) = y0 +

∫ t

t0
f(t , y2)dt

= 2 +

∫ t

0

[
2
(
2 + t + t2 − 2

3
t3 − t4

4

)
− 2t2 − 3

]
dt

= 2 + t + t2 − t4

3
− t5

15
.
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Example 2

Find y(0.1) by Picard’s method from the equation

dy
dt

=
y − t
y + t

, y(0) = 1.
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Example 2
Solution

t0 = 0 y0 = y(0) = 1 f(t , y) =
dy
dt

=
y − t
y + t

Therefore by Picard’s method we get

y1(t) = y0 +

∫ t

t0
f(t , y0)dt

y1(t) = 1 +

∫ t

0

1 − t
1 + t

dt

= 1 +

∫ t

0

(
−1 +

2
1 + t

)
dt

= 1 − t + 2 log(1 + t).
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Example 2
Solution⇒Cont...

Second approximation is

y2(t) = y0 +

∫ t

t0
f(t , y1)dt

= 1 +

∫ t

0

1 − t + 2 log(1 + t) − t
1 − t + 2 log(1 + t) + t

dt

= 1 +

∫ t

0

(
1 − 2t

1 + 2 log(1 + t)

)
dt

which is quite difficult to integrate. Hence using y1(t) and taking
t = 0.1 we get

y1(0.1) = 1 − (0.1) + 2 log(1.1) = 0.9828.
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Chapter 3
Section 3.6

Taylor’s Series Method
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Motivative example

How your calculator gives answer for sin t for any particular
value of t that you request?

It can not remember sin value for every t, because this
requires more memory.

So it uses a polynomial approximation for that.
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Motivative example
Cont...

f ′(t0) ≈
f(t) − f(t0)
(t − t0)

f(t) ≈ f(t0) + f ′(t0)(t − t0)

For example t = 0.2⇒

sin(0.2) ≈ sin 0 + cos 0(0.2 − 0)
≈ 0.2

We can obtain a better result using higher order Taylor
polynomials.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 76/148



Approximating a function using Taylor series

Recall that the nth order Taylor expansion of a (smooth) function
f(t) about the point t = t0 is the degree n polynomial defined by

Tn(t) =

n∑
i=0

1
i!

f (i)(t0)(t − t0)i

= f(t0) + f ′(t0)(t − t0) +
1
2

f ′′(t0)(t − t0)2

+
1
6

f ′′′(t0)(t − t0)3 + ...

Such expansions are extremely useful in that they can be used
as approximate expressions for the original function f .

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 77/148



Approximating a function using Taylor series
Cont...

Taylor’s theorem says

f(t) = Tn(t) + O(|t − t0|n+1)

and that moreover

f(t) = lim
n→∞

Tn(t).

Therefore, one way to get an approximate solution of a
differential equation would be to figure out what its Taylor series
looks like and next we talk about it.
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Approximating solution of a differential equation

Consider the differential equation

dy
dt

= f(t , y), y(t0) = y0. (3)

Let y = y(t) be a continuously diffrentiable function satisfying
the equation (3).

Expanding y in terms of Taylor’s series around the point t = t0,
we get

y = y0 + (t − t0)y′0 +
(t − t0)2

2!
y′′0 +

(t − t0)3

3!
y′′′0 + ... (4)
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Approximating solution of a differential equation
Cont...

The value of the differential coefficients y′0, y
′′
0 , y

′′′
0 , ... at t = t0

can be computed from the equation as follows:

y′ = f(t , y).

Differentiating we get

y′′ = ft + fy
dy
dt

= ft + ffy .

Differentiating again, we get

y′′′ = ftt + ffty + ffty + f2fyy + ft fy + ff2
y

= ftt + 2ffty + ft fy + ff2
y + f2fyy

and so on differentiating successively, we get y iv , yv etc.
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Approximating solution of a differential equation
Cont...

From above equations, we can obtain the values of
y′0, y

′′
0 , y

′′′
0 , ... at (t0, y0) and when used in equation (4) gives us

the desired solution.

This works well so long as the successive derivaties can be
calculated easily.
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Example 1

Use Taylor’s series method to find y(0.1) and y(0.2) from the
equation:

y′ = y2 + x , y(0) = 1.
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Example 1
Solution

The given differential equation is

y′ = y2 + x , y(0) = 1.

Here f(x , y) = y2 + x , x0 = 0, y0 = 1.

The Taylor’s series solution is

y = y0 + (x − x0)y′0 +
(x − x0)

2

2!
y′′0 +

(x − x0)
3

3!
y′′′0 +

(x − x0)
4

4!
y iv

0

+
(x − x0)

5

5!
yv

0 + ...

y = y0 + xy′0 +
x2

2!
y′′0 +

x3

3!
y′′′0 +

x4

4!
y iv

0 +
x5

5!
yv

0 ...

To get the solution we should know y′0, y
′′
0 , y

′′′
0 , y

iv
0 and yv

0 .
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Example 1
Solution⇒Cont...

Therefore we need to calculate followings:

y′ = y2 + x
y′′ = 2yy′ + 1
y′′′ = 2(y′)2 + 2yy′′

y iv = 6y′y′′ + 2yy′′′

yv = 2yy(iv) + 8y′y′′′ + 6(y′′)2
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Example 1
Solution⇒Cont...

Therefore we have to consider y′, y′′, y′′′, y iv and yv at (x0, y0)
to get y′0, y

′′
0 , y

′′′
0 and y iv

0 .

y′ = y2 + x ⇒ y′0 = 12 + 0 = 1.0
y′′ = 2yy′ + 1 ⇒ y′′0 = 2 × 1 × 1 + 1 = 3

y′′′ = 2(y′)2 + 2yy′′ ⇒ y′′′0 = 2(1)2 + 2 × 1 × 3 = 8

y iv = 6y′y′′ + 2yy′′ ⇒ y iv
0 = 6 × 1 × 3 + 2 × 1 × 8 = 34

yv = 2yy(iv) + 8y′y′′′ + 6(y′′)2 ⇒ y(v)
0 = 186
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Example 1
Solution⇒Cont...

Thus the Taylor’s series solution is

y = y0 + xy′0 +
x2

2!
y′′0 +

x3

3!
y′′′0 +

x4

4!
y iv

0 +
x5

5!
yv

0 ...

= 1 + x .1 +
x2

2!
.3 +

x3

3!
.8 +

x4

4!
.34 +

x5

5!
.186...

= 1 + x +
3x2

2
+

4
3

x3 +
17
12

x4 +
31
20

x5 + ...

Here y(0.1) = 1.11647 and y(0.2) = 1.27296.
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Example 2

Find by Taylor’s series method, the value of y at x = 0.1 and
x = 0.2 to five decimal places from

dy
dx

= x2y − 1, y(0) = 1.
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Example 2
Solution

Here y0 = 1 and y′ = x2y − 1.

Differentiating successively and substituting, we get

y′ = x2y − 1 ⇒ y′0 = −1

y′′ = 2xy + x2y′ ⇒ y′′0 = 0

y′′′ = 2y + 4xy′ + x2y′′ ⇒ y′′′0 = 2

y iv = 6y′ + 6xy′′′ + x2y′′′ ⇒ y iv
0 = −6

and so on.
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Example 2
Solution⇒Cont...

Thus by Taylor’s series method, we have

y = 1 + x(−1) +
x2

2!
(0) +

x3

3!
(2) +

x4

4!
(−6) + ...

= 1 − x +
x3

3
− x4

4
+ ...

Hence y(0.1) = 0.90033 and y(0.2) = 0.80227.
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Exercise

Solve the following differential equation using Taylors series
expansion:

dv
du

= 3u2v , v(1) = 1.

Answer:

v(u) = 1 + (u − 1)(3) + 7.5(u − 1)2 + 14.5(u − 1)3.
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Chapter 3
Section 3.7

Multistep Methods
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One step methods

Up to now, all methods we studied were one step
methods.

One step method uses information from only one of the
previous mesh point, ti for the approximation for the mesh
point ti+1.

Although these methods might use functional evaluation
information at points between ti and ti+1, they do not retain
that information for direct use in future approximations.

All the information used by these methods is obtained
within the subinterval over which the solution is being
approximated.
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Moving to multistep methods

Since the approximate solution is available at each of the mesh
points t0, t1, t2, ..., ti before the approximation at ti+1 is obtained,
and because the error |yj − y(tj)| tends to increase with j, it
seems reasonable to develop methods that use these more
accurate previous data when approximating the solution at ti+1.
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Multistep methods

Methods using the approximation at more than one previous
mesh point to determine the approximation at the next point are
called multistep methods.
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Multistep methods
Cont...

An m-step multistep method for solving the initial-value
problem

y′ = f(t , y), a ≤ t ≤ b , y(a) = α,

has a difference equation for finding the approximation yi+1 at
mesh point ti+1 represented by the following equation, where m
is an integer greater than 1:

yi+1 = am−1yi + am−2yi−1 + ...+ a0yi+1−m

+h[bmf(ti+1, yi+1) + bm−1f(ti , yi)

+...+ b0f(ti+1−m, yi+1−m)], (5)

for i = m − 1,m, ...,N − 1, where h = (b − a)/N, the
a0, a1, ..., am−1 and b0, b1, ..., bm are constants, and the starting
values y0 = α, y1 = α1, y2 = α2, ..., ym−1 = αm−1 are specified.
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Multistep methods
Remark 1

The coefficients a0, . . . , am−1 and b0, . . . ,bm determine the
method.

The designer of the method chooses the coefficients,
balancing the need to get a good approximation to the true
solution against the desire to get a method that is easy to
apply.

Often, many coefficients are zero to simplify the method.
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Multistep methods
Remark 2

When bm = 0 the method is called explicit, since (5) gives
yi+1 explicitly in terms of previously determined values.

When bm , 0 the method is called implicit , since yi+1
occurs on both sides of (5) and is specified only implicitly.
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Families of multistep methods

Three families of linear multistep methods are commonly used:

Adams-Bashforth methods,

Adams-Moulton methods,

and the backward differentiation formulas (BDFs).
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Adams-Bashforth methods

The Adams-Bashforth methods are explicit methods.

The coefficients are am−1 = 1 and am−2 = · · · = a0 = 0,
while the bj are chosen such that the methods has order m
(this determines the methods uniquely).
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Adams-Bashforth methods
Cont...

Members of Adams-Bashforth family can be written down as
follows:

yi+1 = yi + hf(ti , yi) (6)

yi+1 = yi + h
(3
2

f(ti , yi) −
1
2

f(ti−1, yi−1)
)

(7)

yi+1 = yi + h
(
23
12

f(ti , yi) −
4
3

f(ti−1, yi−1)

+
5
12

f(ti−2, yi−2)

)
(8)

yi+1 = yi +
h
24

(
55f(ti , yi) − 59f(ti−1, yi−1)

+37f(ti−2, yi−2) − 9f(ti−3, yi−3)

)
(9)
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Fourth-order Adams-Bashforth method

The equation (9) with

y0 = α, y1 = α1, y2 = α2, y3 = α3,

yi+1 = yi +
h
24

(
55f(ti , yi) − 59f(ti−1, yi−1) + 37f(ti−2, yi−2)

−9f(ti−3, yi−3)

)
,

for each i = 3, 4, ...,N − 1, define an explicit four-step method
known as the fourth-order Adams-Bashforth method.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 101/148



Fourth-order Adams-Bashforth method
Note

We cannot calculate the first three steps by this method.
So we apply another method for first three steps.

Usually Runge-Kutta or Taylor method is used to generate
first three steps values.
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Example 1

Use the Runge-Kutta method of order 4 with h = 0.2 to
approximate the solutions to the initial value problem for y(0.2),
y(0.4) and y(0.6).

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

Use above approximations as starting values for the 4th-order
Adams-Bashforth method to compute new approximations for
y(0.8) and y(1.0), and compare these new approximations to
those produced by the Runge-Kutta method of order 4.
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Example 1
Solution

The first four approximations were found to be y(0) = y0 = 0.5;
y(0.2) ≈ y1 = 0.8292933; y(0.4) ≈ y2 = 1.2140762; and
y(0.6) ≈ y3 = 1.6489220.

Now we can use above approximations as starting values for
the 4th-order Adams-Bashforth method to compute new
approximations for y(0.8) and y(1.0).
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Example 1
Solution⇒Cont...

For the 4th-order Adams-Bashforth, we have

yi+1 = yi +
h
24

(55f(ti , yi) − 59f(ti−1, yi−1) + 37f(ti−2, yi−2)

−9f(ti−3, yi−3)),

y4 = y3 +
0.2
24

(55f(t3, y3) − 59f(t2, y2) + 37f(t1, y1)

−9f(t0, y0)),

y4 = 1.6489220 +
0.2
24

(55f(0.6, 1.6489220) − 59f(0.4, 1.2140762)

+37f(0.2, 0.8292933) − 9f(0,0.5)),
= 2.1272892
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Example 1
Solution⇒Cont...

For the 4th-order Adams-Bashforth, we have

yi+1 = yi +
h
24

(55f(ti , yi) − 59f(ti−1, yi−1) + 37f(ti−2, yi−2)

−9f(ti−3, yi−3)),

y5 = y4 +
0.2
24

(55f(t4, y4) − 59f(t3, y3) + 37f(t2, y2)

−9f(t1, y1)),

y5 = 2.1272892 +
0.2
24

(55f(0.8, 2.1272892) − 59f(0.6, 1.6489220)

+37f(0.4, 1.2140762) − 9f(0.2, 0.8292933)),
= 2.6410533
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Example 1
Solution⇒Cont...

The error for these approximations at t = 0.8 and t = 1.0 are,
respectively:

|2.1272295 − 2.1272892| = 5.97 × 10−5 and
|2.6410533 − 2.6408591| = 1.94 × 10−4

The corresponding Runge-Kutta approximations had errors:

|2.1272027 − 2.1272892| = 2.69 × 10−5and
|2.6408227 − 2.6408591| = 3.64 × 10−5
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Example 2

Use 4th-order Adams-Bashforth method to find y(0.8) and
y(1.0) given that

dy
dx

= 1 + y2, y(0) = 0.
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Example 2
Solution

We take h = 0.2 with x0 = 0, y0 = 0 and use Runge-Kutta
fourth order method to obtain

k1 = hf(x0, y0) = 0.2

k2 = hf
(
x0 +

h
2
, y0 +

1
2

k1

)
= 0.202

k3 = hf
(
x0 +

h
2
, y0 +

1
2

k2

)
= 0.20204

k4 = hf(x1, y0 + k3) = 0.20816

y1 = y0 +
1
6
(k1 + 2k2 + 2k3 + k4) = 0.2027

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 109/148



Example 2
Solution⇒ Cont...

By following the same procedure, we can obtain y2, and y3.

Thus we have

xi yi
x0 = 0.0 y0 = 0.0000
x1 = 0.2 y1 = 0.2027
x2 = 0.4 y2 = 0.4228
x3 = 0.6 y3 = 0.6841
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Example 2
Solution⇒ Cont...

xi yi f(xi , yi) = 1 + y2
i

x0 = 0.0 y0 = 0.0000 f(x0, y0) = 1.00000
x1 = 0.2 y1 = 0.2027 f(x1, y1) = 1.04109
x2 = 0.4 y2 = 0.4228 f(x2, y2) = 1.17876
x3 = 0.6 y3 = 0.6841 f(x3, y3) = 1.46799
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Example 2
Solution⇒ Cont...

From the 4th-order Adams-Bashforth, we have

yi+1 = yi +
h
24

(55f(xi , yi) − 59f(xi−1, yi−1) + 37f(xi−2, yi−2)

−9f(ti−3, yi−3)),

y4 = y3 +
0.2
24

(55f(x3, y3) − 59f(x2, y2) + 37f(x1, y1)

−9f(x0, y0)),

y4 = 0.6841 +
0.2
24

(55(1.46799) − 59(1.17876) + 37(1.04109)

−9(1.00000)
=
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Example 2
Solution⇒ Cont...

From the 4th-order Adams-Bashforth, we have

yi+1 = yi +
h
24

(55f(xi , yi) − 59f(xi−1, yi−1) + 37f(xi−2, yi−2)

−9f(xi−3, yi−3)),

y5 = y4 +
0.2
24

(55f(x4, y4) − 59f(x3, y3) + 37f(x2, y2)

−9f(x1, y1)),

y5 =
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Comparison of multistep and RK fourth order method

The advantage of multistep over single-step RK methods
of the same accuracy is that the multistep methods require
only one function evaluation per step, while, RK fourth
order method requires 4.

RK methods have the advantage of including being
self-starting.
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Chapter 3
Section 3.8

Predictor-Corrector Methods
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What is a predictor-corrector method?

A predictor-corrector method is an algorithm that proceeds
in two steps.

First, the prediction step calculates a rough
approximation of the desired quantity.

Second, the corrector step refines the initial
approximation using another means.
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What is a predictor-corrector method?
Cont...

In the predictor-corrector methods, four prior values are
needed for finding the value of y at ti .

These methods though slightly complex, have the
advantage of giving an estimate of error from successive
approximations to yi .
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What is a predictor-corrector method?
Example

If ti and ti+1 be two connective mesh points, such that
ti+1 = ti + h, then in Euler’s method we have

yi+1 = yi + hf(t0 + ih, yi), i = 0, 1, 2, 3, ... (10)

The modified Euler’s method gives us

yi+1 = yi +
h
2
[f(ti , yi) + f(ti+1, yi+1)] (11)
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What is a predictor-corrector method?
Example⇒ Cont...

The value of yi+1 is first estimated by (10) and then used in
right hand side of (11) giving a better approximation of yi+1.

This value of yi+1 is again substituted in (11) to find a still
better approximation of yi+1.

This procedure is repeated till two consecutive iterated
values of yi+1 agree.
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What is a predictor-corrector method?
Example⇒ Cont...

This technique of refining an initially crude estimate of yi+1
by means of a more accurate formula is known as
predictor-corrector method.

The equation (10) is therefore called the predictor while
(11) serves as a corrector of yi+1.

In this section we describe two such methods, namely,
Adams-Moulton method and Milne’s method.
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Section 3.8
Subsection 3.8.1

Adams-Moulton Method
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About Adams-Moulton Method

Here we use Adams-bashforth and Adams-moulton
methods as a pair to contruct a predictor-corrector method.

Also, by using four-step Adams-bashforth and
Adams-moulton methods together, the predictor-corrector
formula is:

y(p)
i+1 = yi +

h
24

(55f(ti , yi) − 59f(ti−1, yi−1) + 37f(ti−2, yi−2)

−9f(ti−3, yi−3)),

y(c)
i+1 = yi +

h
24

(9f(ti+1, y
(p)
i+1) + 19f(ti , yi) − 5f(ti−1, yi−1)

+f(ti−2, yi−2)).
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About Adams-Moulton Method
Cont...

Note, the four-step Adams-bashforth method needs four
initial values to start the calculation.

It needs to use other methods, for example Runge-Kutta,
to get these initial values.
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Example 1

Use Adams-Moulton method to find y(1.4) from the differential
equation

dy
dx

= x2(1 + y),

given that y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.543,
y(1.3) = 1.979.
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Example 1
Solution

Here f(x , y) = x2(1 + y) and h = 0.1.

xi yi f(xi , yi) = x2
i (1 + yi)

x0 = 1.0 y0 = 1.000 f(x0, y0) = 2.000
x1 = 1.1 y1 = 1.233 f(x1, y1) = 2.702
x2 = 1.2 y2 = 1.543 f(x2, y2) = 3.662
x3 = 1.3 y3 = 1.979 f(x3, y3) = 5.035
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Example 1
Solution⇒ Cont...

By Adams-Bashforth predictor method, we obtain

y(p)
i+1 = yi +

h
24

(55f(xi , yi) − 59f(xi−1, yi−1) + 37f(xi−2, yi−2)

−9f(xi−3, yi−3))

y(p)
4 = y3 +

h
24

(55f(x3, y3) − 59f(x2, y2) + 37f(x1, y1)

−9f(x0, y0))

= 1.979 +
0.1
24

(55(5.035) − 59(3.662) + 37(2.702) − 9(2.000))

= 2.573
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Example 1
Solution⇒ Cont...

xi yi f(xi , yi) = x2
i (1 + yi)

x0 = 1.0 y0 = 1.000 f(x0, y0) = 2.000
x1 = 1.1 y1 = 1.233 f(x1, y1) = 2.702
x2 = 1.2 y2 = 1.543 f(x2, y2) = 3.669
x3 = 1.3 y3 = 1.979 f(x3, y3) = 5.035
x4 = 1.4 y(p)

4 = 2.573 f(x4, y
(p)
4 ) = 7.003
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Example 1
Solution⇒ Cont...

Using Adams-Moulton corrector method, we obtain

y(c)
i+1 = yi +

h
24

(9f(xi+1, y
(p)
i+1) + 19f(xi , yi) − 5f(xi−1, yi−1)

+f(xi−2, yi−2))

y(c)
4 = y3 +

h
24

(9f(x4, y
(p)
4 ) + 19f(x3, y3) − 5f(x2, y2)

+f(x1, y1))

= 1.979 +
0.1
24

(9(7.003) + 19(5.035) − 5(3.669) + 2.702)

= 2.575

Hence y(1.4) = 2.575.
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Example 2

Use Adams-Moulton method with h = 0.2 to find y(0.8) given
that

dy
dx

= 1 + y2, y(0) = 0.
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Example 2
Solution

We take h = 0.2 with x0 = 0, y0 = 0 and use Runge-Kutta
fourth order method to obtain

k1 = hf(x0, y0) = 0.2

k2 = hf
(
x0 +

h
2
, y0 +

1
2

k1

)
= 0.202

k3 = hf
(
x0 +

h
2
, y0 +

1
2

k2

)
= 0.20204

k4 = hf(x1, y0 + k3) = 0.20816

y1 = y0 +
1
6
(k1 + 2k2 + 2k3 + k4) = 0.2027
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Example 2
Solution⇒ Cont...

By following the same procedure, we can obtain y2, and y3.

Thus we have

xi yi f(xi , yi) = 1 + y2
i

x0 = 0.0 y0 = 0.0000 f(x0, y0) = 1.00000
x1 = 0.2 y1 = 0.2027 f(x1, y1) = 1.04109
x2 = 0.4 y2 = 0.4228 f(x2, y2) = 1.17876
x3 = 0.6 y3 = 0.6841 f(x3, y3) = 1.46799
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Example 2
Solution⇒ Cont...

By Adams-Bashforth predictor method, we obtain

y(p)
i+1 = yi +

h
24

(55f(xi , yi) − 59f(xi−1, yi−1) + 37f(xi−2, yi−2)

−9f(xi−3, yi−3))

y(p)
4 = y3 +

h
24

(55f(x3, y3) − 59f(x2, y2) + 37f(x1, y1)

−9f(x0, y0))

= 0.6841 +
0.2
24

(55(1.46799) − 59(1.17876) + 37(1.04109)

−9(1.0000))
= 1.02337
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Example 2
Solution⇒ Cont...

xi yi f(xi , yi) = 1 + y2
i

x0 = 0.0 y0 = 0.0000 f(x0, y0) = 1.00000
x1 = 0.2 y1 = 0.2027 f(x1, y1) = 1.04109
x2 = 0.4 y2 = 0.4228 f(x2, y2) = 1.17876
x3 = 0.6 y3 = 0.6841 f(x3, y3) = 1.46799
x4 = 0.8 y4 = 1.02337 f(x4, y

(p)
4 ) = 2.04729
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Example 2
Solution⇒ Cont...

Using Adams-Moulton corrector method, we obtain

y(c)
i+1 = yi +

h
24

(9f(xi+1, y
(p)
i+1) + 19f(xi , yi) − 5f(xi−1, yi−1)

+f(xi−2, yi−2))

y(c)
4 = y3 +

h
24

(9f(x4, y
(p)
4 ) + 19f(x3, y3) − 5f(x2, y2)

+f(x1, y1))

= 0.6841 +
0.2
24

(9(2.04729) + 19(1.46799) − 5(1.17876)

+(1.04109))
= 1.0296
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Section 3.8
Subsection 3.8.2

Milne’s Method
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About Milne’s method

Consider the differential equation

dy
dt

= f(t , y), y(a) = α. (12)

In general, Milne’s method uses following predictor and
corrector formulae to approximate solutions of (12).

y(p)
i+1 = yi−3 +

4h
3

(2f(ti , yi) − f(ti−1, yi−1) + 2f(ti−2, yi−2))

y(c)
i+1 = yi−1 +

h
3

(
f(ti+1, y

(p)
i+1) + 4f(ti , yi) + f(ti−1, yi−1)

)
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Example 1

Using the Runge-Kutta method of order 4 to find y for
x = 0.1, 0.2,0.3 given that

dy
dx

= xy + y2, y(0) = 1.

Continue the solution at x = 0.4 by using Milne’s method.
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Example 1
Solution

Here f(x , y) = xy + y2, x0 = 0, y0 = 0, h = 0.1 and by using
Runge-Kutta fourth order method to obtain

k1 = hf(x0, y0) = 0.1000

k2 = hf
(
x0 +

h
2
, y0 +

1
2

k1

)
= 0.1155

k3 = hf
(
x0 +

h
2
, y0 +

1
2

k2

)
= 0.1172

k4 = hf(x1, y0 + k3) = 0.13598

y1 = y0 +
1
6
(k1 + 2k2 + 2k3 + k4) = 1.1169
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Example 1
Solution⇒ Cont...

By again applying Runge-Kutta method, we can obtain y2 and
y3 in the same way.

Thus we have starting values for Milne’s method as follows:

xi yi f(xi , yi) = xiyi + y2
i

x0 = 0.0 y0 = 1.00000 f(x0, y0) = 1.0000
x1 = 0.1 y1 = 1.01169 f(x1, y1) = 1.3591
x2 = 0.2 y2 = 1.27730 f(x2, y2) = 1.8869
x3 = 0.3 y3 = 1.5049 f(x3, y3) = 2.7132
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Example 1
Solution⇒ Cont...

Using predictor equation, we have

y(p)
i+1 = yi−3 +

4h
3

(2f(xi , yi) − f(xi−1, yi−1) + 2f(xi−2, yi−2))

y(p)
4 = y0 +

4h
3

(2f(x3, y3) − f(x2, y2) + 2f(x1, y1))

= 1.8344
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Example 1
Solution⇒ Cont...

x4 = 0.4, y(p)
4 = 1.8344 ⇒ f(x4, y

(p)
4 ) = 4.0988

Now using corrector

y(c)
i+1 = yi−1 +

h
3

(
f(xi+1, y

(p)
i+1) + 4f(xi , yi) + f(xi−1, yi−1)

)
y(c)

4 = y2 +
h
3

(
f(x4, y

(p)
4 ) + 4f(x3, y3) + f(x2, y2)

)
= 1.8386
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Example 1
Solution⇒ Cont...

x4 = 0.4, y(c)
4 = 1.8386 ⇒ f(x4, y

(c)
4 ) = 4.1159

Again using the corrector we get

y(c)
i+1 = yi−1 +

h
3

(
f(xi+1, y

(c)
i+1) + 4f(xi , yi) + f(xi−1, yi−1)

)
y(c)

4 = y2 +
h
3

(
f(x4, y

(c)
4 ) + 4f(x3, y3) + f(x2, y2)

)
y4 = 1.2773 +

0.1
3

(1.8869 + 4(2.7132) + 4.1182)

= 1.8392
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Example 1
Solution⇒ Cont...

x4 = 0.4, y(c)
4 = 1.8392 ⇒ f(x4, y

(c)
4 ) = 4.1182

Again using the corrector we get

y(c)
i+1 = yi−1 +

h
3

(
f(xi+1, y

(c)
i+1) + 4f(xi , yi) + f(xi−1, yi−1)

)
y(c)

4 = y2 +
h
3

(
f(x4, y

(c)
4 ) + 4f(x3, y3) + f(x2, y2)

)
= 1.2773 +

0.1
3

(1.8869 + 4(2.7132) + 4.1182)

= 1.8392

Hence Milne’s method approximation is 1.8392.
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Example 2

Use Milne’s method to find y(0.8) and y(1.0) from

dy
dx

= 1 + y2, y(0) = 0,

given that y(0.2) = 0.2027, y(0.4) = 0.4228 and
y(0.6) = 0.6841.
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Example 2
Solution

Here f(x , y) = 1 + y2, x0 = 0, y0 = 0, and h = 0.2.
The starting values for Milne’s method are

xi yi f(xi , yi) = 1 + y2
i

x0 = 0.0 y0 = 0.0000 f(x0, y0) = 1.0000
x1 = 0.2 y1 = 0.2027 f(x1, y1) = 1.0411
x2 = 0.4 y2 = 0.4228 f(x2, y2) = 1.1787
x3 = 0.6 y3 = 0.6841 f(x3, y3) = 1.4681
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Example 2
Solution⇒ Cont...

Using Milne’s predictor formula, we get

y(p)
i+1 = yi−3 +

4h
3

(2f(xi , yi) − f(xi−1, yi−1) + 2f(xi−2, yi−2))

y(p)
4 = y0 +

4h
3

(2f(x3, y3) − f(x2, y2) + 2f(x1, y1))

= 0 +
0.8
3

(2(1.4681) − 1.1787 + 2(1.0411))

= 1.0239
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Example 2
Solution⇒ Cont...

x4 = 0.8, y(p)
4 = 1.0239 ⇒ f(x4, y

(p)
4 ) = 2.0480

Now the Milne’s corrector formula provides us

y(c)
i+1 = yi−1 +

h
3

(
f(xi+1, y

(p)
i+1) + 4f(xi , yi) + f(xi−1, yi−1)

)
y(c)

4 = y2 +
h
3

(
f(x4, y

(p)
4 ) + 4f(x3, y3) + f(x2, y2)

)
= 0.4228 +

0.2
3

(2.0480 + 4(1.4681) + 1.1787)

= 1.0294

Proceeding on similar lines, we obtain y5 = y(1.0) = 1.5549.
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Thank you !
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