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Introduction

In many problems of real world, an explicit form of a
function is not given.

However, the values of dependent variable for changes in
the independent variable are known.

The change in the independent variable is not continuous
but by finite jumps, whether equal or unequal.

The behavior of the function can be studied with the help of
these observations.

In this chapter, we consider the formulae expresses in
terms of differences of the functional values.
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Forward difference
The first forward difference

We define the first forward difference operators, denoted
by ∆, as

∆f(x) = f(x + h) − f(x).

The expression f(x + h) − f(x) gives the first forward
difference of y = f(x) and the operator ∆ is called the first
forward difference operators.

Given the step size h, this formula uses the values at x and
x + h, the point at the next step.

As it is moving in the forward direction, it is called the
forward difference operator.
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Forward difference
The first forward difference⇒Cont...

In particular, for x = x0, we get,

∆f(x0) = f(x0 + h) − f(x0)

∆y0 = y1 − y0.

In particular, for x = xk , we get,

∆f(xk ) = f(xk + h) − f(xk )

∆yk = yk+1 − yk .
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Forward difference
The second forward difference

The second forward difference operator, ∆2, is defined as

∆2f(x) = ∆(∆f(x))
= ∆(f(x + h) − f(x))
= ∆f(x + h) −∆f(x)
= f(x + 2h) − f(x + h) − f(x + h) + f(x)
= f(x + 2h) − 2f(x + h) + f(x)
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Forward difference
The second forward difference⇒Cont...

In particular, for x = xk , we get,

∆2yk = ∆(∆yk )

∆2yk = ∆(yk+1 − yk )

∆2yk = ∆yk+1 −∆yk

∆2yk = yk+2 − 2yk+1 + yk .
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Forward difference
The rth forward difference

The rth forward difference operator, ∆r , is defined as

∆r f(x) = ∆r−1f(x + h) −∆r−1f(x), r = 1, 2, 3, ....
with ∆0f(x) = f(x).
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Forward difference
Forward difference table for the function y = f(x)

x f(x)
x0 f(x0)

∆f(x0)
∆2f(x0)

x0 + h f(x0 + h)
∆f(x0 + h) ∆3f(x0)

∆2f(x0 + h)
x0 + 2h f(x0 + 2h)

∆f(x0 + 2h) ∆3f(x0 + h)
∆2f(x0 + 2h)

x0 + 3h f(x0 + 3h)
∆f(x0 + 3h)

x0 + 4h f(x0 + 4h)
: : : : :
. . . . .
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Forward difference
An alternative forward difference table for the function y = f(x)
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Example 1

Find ∆y4, ∆2y2 and ∆3y2 for the tabulated values of y = f(x).

i 0 1 2 3 4 5
xi 0 0.1 0.2 0.3 0.4 0.5
yi 0.03 0.13 0.22 0.38 0.44 0.79
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Example 1
Solution

∆y4 = y5 − y4

= 0.79 − 0.44
= 0.35

∆2y2 = ∆(∆y2)

= ∆(y3 − y2)

= ∆y3 −∆y2

= (y4 − y3) − (y3 − y2)

= y4 − 2y3 + y2

= 0.44 − 2 × 0.38 + 0.22
= −0.1
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Example 1
Solution⇒Cont...

∆3y2 = ∆(∆2y2)

= ∆(y4 − 2y3 + y2)

= ∆y4 − 2∆y3 +∆y2

= (y5 − y4) − 2(y4 − y3) + (y3 − y2)

= y5 − 3y4 + 3y3 − y2
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Example 2

Show that

∆ tan−1 x = tan−1 1
1 + x + x2 ,

if unity is the interval of differencing.
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Example 2
Solution

Let f(x) = tan−1 x. Then by applying first forward difference
formula, we have

∆f(x) = f(x + h) − f(x)
∆ tan−1 x = tan−1(x + h) − tan−1 x
∆ tan−1 x = tan−1(x + 1) − tan−1 x

∆ tan−1 x = tan−1 x + 1 − x
1 + x(x + 1)

∆ tan−1 x = tan−1 1
1 + x + x2
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Example 3

Evaluate

∆x(x + 1)(x − 2)

if unity is the interval of differencing.
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Example 3
Solution

Let f(x) = x(x + 1)(x − 2). Then by applying first forward
difference formula, we have

∆f(x) = f(x + h) − f(x)
∆x(x + 1)(x − 2) = (x + h)(x + 1 + h)(x − 2 + h) − x(x + 1)(x − 2)
∆x(x + 1)(x − 2) = (x + 1)(x + 2)(x − 1) − x(x + 1)(x − 2)
∆x(x + 1)(x − 2) = (x + 1)(3x − 2)
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Remark

If f is a constant é ∆f = 0.

If k is a constant é∆(kf) = k (∆f).
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Exercise

If ∆3(1 − ax)(1 − 3x)(1 − 4x) = 72, find a, given unity as the
interval of differencing.

Answer is a = −1
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Backward difference
First backward difference

The first backward difference operator denoted by ∇, is
defined as

∇f(x) = f(x) − f(x − h).

Given the step size h, note that this formula uses the
values at x and x − h, the point at the previous step.

As it moves in the backward direction, it is called the
backward difference operator.
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Backward difference
The second backward difference

The second backward difference operator denoted by ∇2,
is defined as

∇2f(x) = ∇(∇f(x))
= ∇ (f(x) − f(x − h))
= ∇f(x) − ∇f(x − h)
= f(x) − f(x − h) − f(x − h) + f(x − 2h)
= f(x) − 2f(x − h) + f(x − 2h)
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Backward difference
The rth backward difference

The rth backward difference operator, ∇r , is defined as

∇r f(x) = ∇r−1f(x) − ∇r−1f(x − h), r = 1, 2, 3..
with ∇0f(x) = f(x).
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Backward difference
The rth backward difference⇒Cont...

In particular, for x = xk , we get

∇yk = yk − yk−1

and

∇2yk = ∇yk − ∇yk−1

= yk − 2yk−1 + yk−2

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 24/148



Backward difference
Backward difference table for the function y = f(x)
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Remark

In general it can be shown that ∆k f(x) = ∇k f(x + kh) or
∆k ym = ∇k yk+m.
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Example

Find ∇y5, ∇2y2 and ∇3y3 for the tabulated values of y = f(x).

i 0 1 2 3 4 5
xi 0 0.1 0.2 0.3 0.4 0.5
yi 0.03 0.13 0.22 0.38 0.44 0.79
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Example
Solution

∇y5 = y5 − y4

= 0.79 − 0.44
= 0.35

∇2y2 = ∇(y2 − y1)

= ∇y2 − ∇y1

= y2 − y1 − y1 + y0

= y2 − 2y1 + y0

= 0.22 − 2 × 0.13 + 0.03
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Example
Solution⇒Cont...

∇3y3 = ∇2(∇y3)

= ∇2(y3 − y2)

= ∇2y3 − ∇2y2

= ∇(y3 − y2) − ∇(y2 − y1)

= (y3 − y2 − y2 + y1) − (y2 − y1 − y1 + y0)

= (y3 − 2y2 + y1) − (y2 − 2y1 + y0)

= y3 − 3y2 + 3y1 − y0

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 29/148



Central difference
The first central difference

The first central difference operator, denoted by δ, is defined by

δf(x) = f
(
x +

h
2

)
− f

(
x − h

2

)
.
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Central difference
The second central difference

δ2f(x) =?
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Central difference
The second central difference

δ2f(x) = δf
(
x +

h
2

)
− δf

(
x − h

2

)
= f

(
x +

h
2
+

h
2

)
− f

(
x +

h
2
− h

2

)
−f

(
x − h

2
+

h
2

)
+ f

(
x − h

2
− h

2

)
= f(x + h) − 2f(x) + f(x − h)
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Central difference
The rth central difference

δr f(x) = δr−1f
(
x +

h
2

)
− δr−1f

(
x − h

2

)
with δ0f(x) = f(x).
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Central difference
The rth central difference⇒Cont...

In particular, for x = xk , define yk+ 1
2
= f(xk + h

2 ), and

yk− 1
2
= f(xk − h

2 ), then

δfk = fk+ 1
2
− fk− 1

2

δyk = yk+ 1
2
− yk− 1

2
,

and

δ2yk = yk+1 − 2yk + yk−1.
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Central difference
Central difference table for the function y = f(x)

x f δf δ2f δ3f δ4f
x0 f0

δf1/2
δ2f1

x1 f1
δf3/2 δ3f3/2

δ2f2 δ4f2
x2 f2

δf5/2 δ3f5/2
δ2f3

x3 f3
δf7/2

x4 f4
: : : : : :
. . . . . .
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Shift operator

The shift operator E is defined as

Ef(x) = f(x + h), where h > 0.

And also

Efi = fi+1.
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Shift operator
The rth power shift operator

The power of E are defined by

Er f(x) = f(x + rh), r = 1, 2, ...
E0f(x) = f(x).
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Shift operator
The relationship between E and ∆

The relationship between E and ∆ can be obtained as follows:

∆f(x) = f(x + h) − f(x)
= Ef(x) − f(x) or

∆f(x) = (E − 1)f(x).

Using this relation, we can express ∆r f(x) in terms of the
values of f(x). That is, we treat (E − 1) as an operator which
can be manipulated by the rules of algebra, provided it
precedes an entity on which it operates. Therefore

∆r f(x) = (E − 1)r f(x).
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Shift operator
The relationship between E and δ

The relationship between operators is given by

δf(x) = f
(
x +

h
2

)
− f

(
x − h

2

)
= E1/2f(x) − E−1/2f(x)
= (E1/2 − E−1/2)f(x), so that

δ = E1/2 − E−1/2.
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Inverse operator

The inverse operator E−1 is defined as

E−1f(x) = f(x − h), where h > 0.
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Inverse operator
Powers of inverse operator

E−2f(x) = f(x − 2h)
E−3f(x) = f(x − 3h)

:

.

E−r f(x) = f(x − rh)

E−1/2f(x) = f
(
x − 1

2
h
)

E−1/2fi = fi− 1
2
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Averaging operator

The averaging operator µ is defined as

µf(x) =
1
2

[
f
(
x +

h
2

)
+ f

(
x − h

2

)]
.
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Averaging operator
The relationship between µ and E

The relationship between operators is given by

µf(x) =
1
2

[
f
(
x +

h
2

)
+ f

(
x − h

2

)]
=

1
2

[
E1/2f(x) + E−1/2f(x)

]
=

1
2
(E1/2 + E−1/2)f(x), so that

µ =
1
2

[
E1/2 + E−1/2

]
.
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Differential operator

Differential operators are a generalization of the operation of
differentiation. The simplest differential operator D, acting on a
function f(x), returns the first derivative of this function:

Df(x) = f ′(x).

Double D allows to obtain the second derivative of the function:

D2f(x) = f ′′(x).

Similarly, the rth power of D leads to the rth derivative:

Dr f(x) = f (r)(x).
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Divided differences

The first divided difference of f(x) between x0 and x1 is denoted
by f [x0, x1] and is defined as

f [x0, x1] =
f(x0) − f(x1)

x0 − x1
,

and similarly, between the arguments x1 and x2 as

f [x1, x2] =
f(x1) − f(x2)

x1 − x2
.

Note: In this course unit square brackets are used for divided
differences.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 45/148



Divided differences
The second-order divided difference

The second-order divided difference between three arguments
x0, x1 and x2 denoted by f [x0, x1, x2] is defined as

f [x0, x1, x2] =
f [x0, x1] − f [x1, x2]

x0 − x2
.
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Divided differences
The (r + 1)th divided difference

In general, (r + 1)th divided difference denoted by
f [x0, x1, x2, ..., xr+1] is defined as

f [x0, x1, x2, ..., xr+1] =
f [x0, x1, x2, ..., xr ] − f [x1, x2, x3, ..., xr+1]

x0 − xr+1
.
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Some important relations between the operators

1 ∇ = 1 − E−1

2 ∆ = E∇

3 ∆ − ∇ = ∆∇

4 µ2 = 1 + 1
4δ

2

5 δ2 = ∆ − ∇
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Why do we need differences?
Numerical differentiation

The simplest way to compute a function’s derivatives
numerically is to use finite difference approximations.

Suppose we are interested in computing the first derivative
of a smooth function f : R→ R.

Then from the definition of a derivative, we have

f ′(x) = lim
h→0

f(x + h) − f(x)
h

.

If we choose small h, it can be approximated by

f ′(x) ≈ f(x + h) − f(x)
h

.
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Why do we need differences?
Numerical differentiation⇒Cont...

This is the easiest and most intuitive finite difference
formula and it is called the forward difference.

The forward difference is the most widely used way to
compute numerical derivatives but often it is not the best
choice.
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Why do we need differences?
Numerical differentiation⇒Cont...

Figure: Differences for first derivative

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 51/148



Error bound for the forward difference

In order to compare to alternative approximations we need to
derive an error bound for the forward difference. This can be
done by taking a Taylor expansion of f(x + h),

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f iv(x)...

f(x + h) − f(x) = hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f iv(x)...

f(x + h) − f(x)
h

= f ′(x) +
h
2!

f ′′(x) +
h2

3!
f ′′′(x) +

h3

4!
f iv(x)...

f(x + h) − f(x)
h

= f ′(x) + O(h)

f ′(x) ≈ f(x + h) − f(x)
h

.
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Error bound for the forward difference
Cont...

We say that this approximation is first-order accurate since
the dominate term in the truncation error is O(h).

This means that the error of the forward difference
approximation of the first derivative is proportional to the
step size h.
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Error bound for the backward difference

Taking the Taylor series expansion of f(x − h) about x, as:

f(x − h) = f(x) − hf ′(x) +
h2

2!
f ′′(x) − h3

3!
f ′′′(x) +

h4

4!
f iv(x)...

f(x) − f(x − h) = hf ′(x) − h2

2!
f ′′(x) +

h3

3!
f ′′′(x) − h4

4!
f iv(x)...

f(x) − f(x − h)
h

= f ′(x) − h
2!

f ′′(x) +
h2

3!
f ′′′(x) − h3

4!
f iv(x)...

f(x) − f(x − h)
h

= f ′(x) + O(h)

f ′(x) ≈ f(x) − f(x − h)
h

This equation has also an error of O(h).
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Error bound for the central difference

In order to derive another approximation formula for the first
derivative, we tack the Taylor series expansion of f(x + h) and
f(x − h):

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f iv(x) + ...

f(x − h) = f(x) − hf ′(x) +
h2

2!
f ′′(x) − h3

3!
f ′′′(x) +

h4

4!
f iv(x) − ...

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 55/148



Error bound for the central difference
Cont...

Divide the difference between these two equations by 2h to get
the central difference approximation for the first derivative as:

f(x + h) − f(x − h)
2h

= f ′(x) +
h2

3!
f ′′′(x) +

h4

5!
fv(x) + ...

f(x + h) − f(x − h)
2h

= f ′(x) + O(h2)

f ′(x) ≈ f(x + h) − f(x − h)
2h

.

Which can be regarded as an improvement over forward and
backward, since it has the truncation error of O(h2) for |h| < 1.
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Remark

Notice that the central difference approximation is
second-order accurate since the dominate term in its
truncation error is O(h2).

Thus the central difference is more accurate than the
forward and backward difference due to its smaller
truncation error.
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Approximation error

Given some value v and its approximation vapprox, the
absolute error is

ϵ = |v − vapprox|,

where the vertical bars denote the absolute value. If v , 0, the
relative error is

η =
|v − vapprox|

|v | ,

and the percent error is

λ =
|v − vapprox|

|v | × 100.

These definitions can be extended to the case when v and
vapprox are n-dimensional vectors, by replacing the absolute
value with an n-norm.
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Example

Suppose you are given f(x) = ln x, then

a) calculate the exact value of f ′(1.8).

b) obtain forward difference approximation for f ′(1.8), if
h = 0.1.

c) obtain backward difference approximation for f ′(1.8), if
h = 0.1.

d) obtain central difference approximation for f ′(1.8), if
h = 0.1.

e) calculate percent error for each of the above
approximation.

f) repeat calculation, if h = 0.01.
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Example
Solution

a)

f(x) = ln x

f ′(x) =
1
x

f ′(1.8) =
1

1.8
= 0.555555

b)

f ′(x) ≈ f(x + h) − f(x)
h

f ′(1.8) ≈ f(1.9) − f(1.8)
0.1

≈ 0.540672
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Example
Solution⇒Cont...

c)

f ′(x) ≈ f(x) − f(x − h)
h

f ′(1.8) ≈ f(1.8) − f(1.7)
0.1

= 0.571584

d)

f ′(x) ≈ f(x + h) − f(x − h)
2h

f ′(1.8) ≈ f(1.9) − f(1.7)
0.2

= 0.556128
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Example
Solution⇒Cont...

e)

Forward difference ⇒ |0.555555 − 0.540672|
|0.555555| × 100

= 2.68%

Backward difference ⇒ |0.555555 − 0.571584|
|0.555555| × 100

= 2.88%

Central difference ⇒ |0.555555 − 0.556128|
|0.555555| × 100

= 0.10%
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Example
Solution⇒Cont...

f)

Forward difference ⇒ f ′(1.8) ≃ f(1.81) − f(1.8)
0.01

= 0.554018

⇒ percent error = 0.27%

Backward difference ⇒ f ′(1.8) ≃ f(1.8) − f(1.79)
0.01

= 0.557104

⇒ percent error = 0.28%

Central difference ⇒ f ′(1.8) ≃ f(1.81) − f(1.79)
0.02

= 0.555561

⇒ percent error = 0.0001%
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Exercise

Suppose you are given f(x) =
√

x, then

a) calculate the exact value of f ′(2).

b) obtain forward difference approximation for f ′(2), if h = 0.2.

c) obtain backward difference approximation for f ′(2), if
h = 0.2.

d) obtain central difference approximation for f ′(2), if h = 0.2.

e) calculate percent error for each of the above
approximation.

f) repeat calculation, if h = 0.02.
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Exercise
Solution

a) 0.353553
b) 0.345130
c) 0.362864
d) 0.353997
e) 2.38%, 2.63%, 0.12%
f) 0.352674 ( 0.25%), 0.354442 (0.25%), 0.3535578

(0.0012%)
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Approximation for the second derivative

In order to obtain an approximation formula for the second
derivative, we take the Taylor series expansion of f(x + h) and
f(x − h):

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f iv(x) + ...

f(x − h) = f(x) − hf ′(x) +
h2

2!
f ′′(x) − h3

3!
f ′′′(x) +

h4

4!
f iv(x) − ...

Adding these two equations:

f(x + h) + f(x − h) = 2f(x) + h2f ′′(x) + 2
h4

4!
f iv(x) + ...
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Approximation for the second derivative
Cont...

Subtracting 2f(x) from both sides and dividing both sides by h2

yields:

f(x + h) − 2f(x) + f(x − h)
h2 = f ′′(x) +

h2

12
f iv(x) + ...

Which has a truncation error of O(h2).

f ′′(x) ≈ f(x + h) − 2f(x) + f(x − h)
h2 .
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Remark

We can find finite difference approximations for other
higher order derivatives using a similar approach.
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Chapter 2
Section 2.2

Difference equations
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Why do we need difference equations?

Some real world relations are recorded at fixed time
intervals.

For example, income, expenditure, savings and inflation
could be measured daily, weekly, monthly, quarterly,
annually and so on.

Equations that relate such quantities are referred to as
difference equations.

Difference equations are the discrete time counterparts
of diferential equations which we will also study in this
course.
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Differential and difference equations

Differential equations are those in which an equality is
expressed in terms of a function of one or more
independent variables and derivatives of the function with
respect to one or more of those independent variables.

Difference equations are those in which an equality is
expressed in terms of a function of one or more
independent variables and finite differences of the
function.
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Differential and difference equations
Cont...

Differential equations are important in signal and system
analysis because they describe the dynamic behavior of
continuous time physical systems.

Difference equations are important in signal and system
analysis because they describe the dynamic behavior of
discrete time systems.
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Differential and difference equations
Cont...

Discrete time is equally-spaced points in time, separated
by some time difference ∆t .

In discrete time signals and systems the behavior of a
signal and the action of a system are known only at
discrete points in time and are not defined between those
discrete points in time.
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Connection between difference and differential equations

Let us consider the first order ordinary differential equation,

3
dy(t)

dt
+ 5y(t) = 0. (1)

It can be approximated by a difference equation.

We can do this by approximating derivatives by finite
differences.
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Connection between difference and differential equations
Cont...

Recall these definitions of a derivative,

dy(t)
dt

= lim
∆t→0

y(t +∆t) − y(t)
∆t

,

dy(t)
dt

= lim
∆t→0

y(t) − y(t −∆t)
∆t

,

dy(t)
dt

= lim
∆t→0

y(t +∆t) − y(t −∆t)
2∆t

.
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Connection between difference and differential equations
Cont...

At any point at which y(t) is differentiable, any of these
definitions of a derivative yield exactly the same result
when the limit is taken.

A derivative in continuous time can be approximated by a
finite difference in discrete time by

y ((n + 1)∆t) − y (n∆t)
∆t

⇐ Forward difference

y (n∆t) − y ((n − 1)∆t)
∆t

⇐ Backward difference

y ((n + 1)∆t) − y ((n − 1)∆t)
2∆t

⇐ Central difference
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Connection between difference and differential equations
Cont...

As an illustration we will convert the differential equation
(1), to a difference equation by using a forward difference
approximation,

3
y ((n + 1)∆t) − y (n∆t)

∆t
+ 5y(n∆t) = 0.

Here y(n∆t) is used to represent the nth value of y.

It can also be denoted as yn.

By using that familiar notation, the above equation can be
expressed as

3(yn+1 − yn) + 5∆t yn = 0.
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Connection between difference and differential equations
Cont...

To solve the above difference equation, we can rewrite it in
recursion form

yn+1 =
3 − 5∆t

3
yn.

In recursion form, the difference equation expresses the
next value of y (say yn+1) in terms of the present value of y
(say yn).
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Definition of difference equation

A difference equation, also called recurrence equation,
is an equation that defines a sequence recursively.

Each term of the sequence is defined as a function of the
previous terms of the sequence:

yn+1 = f(yn, yn−1, ...y0).
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Example 1

Fibonacci sequence are the numbers in the following integer
sequence:

1, 1, 2, 3, 5,8,13, 21,35, ...

Define it using a recurrence equation.
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Example 1
Solution

yn = yn−1 + yn−2 (2)

Equation (2) defines the so-called Fibonacci sequence.
Starting with y0 = 1 and y1 = 1, we can easily calculate each
following terms of the sequence:

1, 1, 2,3,5,8,13, 21, 35, ...

Note that each term can be computed only if the two first terms
of the sequence are given. Those terms are called the initial
conditions of the system.
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Example 2

Suppose a certain polpulation of rabits is growing at the rate of
3% per year. If we let y0 represents the size of the initial
population of rabits and yn represents the number of rabits n
years, then define population growth using a recurrence
equation.
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Example 2
Solution

y1 = y0 + 0.03y0

y2 = y1 + 0.03y1

.

.

.

yn = yn−1 + 0.03yn−1

yn+1 = yn + 0.03yn
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Example 3

Radium is a radioactive element which decays at a rate of 1%
every 25 years. This means that amount left at the beginning of
any given 25 years period is equal to the amount at the
beginning of the previous 25 years period minus 1% of that
amount. If y0 is the initial amount of the Radium and yn is the
amount of Radium still remaining after 25 years, then define
radioactive decay using a recurrence equation.
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Example 3
Solution

y1 = 0.99y0

y2 = 0.99y1 = 0.99(0.99y0) = (0.99)2y0

y3 = 0.99y2 = 0.99(0.99y1) = (0.99)3y0

.

.

.

yn = = 0.99yn−1 = (0.99)ny0
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Classification of difference equations

As with differential equations, one can refer to the order of
a difference equation and note whether it is linear or
non-linear and whether it is homogeneous or non
homogeneous.
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Order of difference equations

The order of a linear recurrence relation is the number of
preceeding terms required by the definition.

xt = −5xt−1 + 9 ⇐ First order
xn = rxn−1(1 − xn−1) ⇐ First order

xn = xn−1 + xn−2 ⇐ Second order
xn+2 − 2xn+1 + 2xn = 0 ⇐ Second order

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 87/148



Linear difference equations

A difference equation is said to be linear when each term
of the sequence is defined as a linear function of the
preceding terms.

xn = xn−1 + xn−2 ⇐ Linear
xn = rxn−1(1 − xn−1) ⇐ Non linear
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Homogeneous difference equation

The general form of a linear recurrence relation of order p
is as follows:

xn = an−1xn−1 + an−2xn−2 + ...+ an−pxn−p + a0.

If the coefficients ai does not depend on n, then the
recurrence relation is said to have constant coefficients.

In addition, if a0 = 0, the recurrence relation is said to be
homogeneous.
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Solving a difference equation

Solving a difference equation means to find an explicit
relation between xn and the initial conditions.

For example the solution of xn = xn−1 + xn−2, would allow
us to evaluate x520 (given x0 and x1) without computing all
the 520 intermediary values.

The method to solve a difference equation depends on the
type of equation we have.
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Solving first order linear difference equations

The simplest first-order difference equation is the
homogeneous equation:

xn+1 = axn.

The solution can be found easily:

xn+1 = axn = a(axn−1) = ... = a(a(a...(ax0))).

Generally we have:

xn = anx0.

The behavior of the system depends on the value of a.
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Example 1

Solve xn+1 = 10xn, where x0 = 1, and find x25.
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Example 1
Solution

The solution can be found easily:

xn+1 = 10xn

= 10(10xn−1) = ... = 10(10(10...(10x0)))

Generally we have xn = (10)nx0. Then

x25 = (10)25 × 1
x25 = (10)25
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Example 2

Solve vn = 5vn−1, where v1 = 2, and find v8.
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Example 2
Solution

vn = (5)n−1v1

= 2 × (5)n−1

v8 = (5)8−1 × 2
= 2 × (5)7
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Solving first order non-homogeneous difference equation

More generally, non-homogeneous first-order difference
equation takes the form:

xn+1 = axn + b .

The solution can be found easily:

x1 = ax0 + b
x2 = ax1 + b = a(ax0 + b) + b = a2x0 + (a + 1)b
x3 = ax2 + b = a(a2x0 + (a + 1)b) + b = a3x0 + (a2 + a + 1)b

Generally we have:

xn = anx0 + (an−1 + an−2 + ...+ a + 1)b
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Solving first order non-homogeneous difference equation
Cont...

Using the summation formula for a geometric series we have:

xn+1 = axn + b ⇔ xn = an
(
x0 −

b
1 − a

)
+

b
1 − a

(a , 1)
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Example 1

Solve xn+1 = xn + 1, with the initial condition x0 = 1.

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 98/148



Example 1
Solution

The solution can be found easily:

x1 = x0 + 1
x2 = x1 + 1 = (x0 + 1) + 1 = x0 + 2
x3 = x2 + 1 = (x0 + 2) + 1 = x0 + 3

.

.

.

xn = x0 + n
Since x0 = 1,we have

xn = 1 + n.
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Example 2

Solve xn+1 = −3xn + 4, with the initial condition x0 = 2.
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Example 2
Solution

xn+1 = axn + b ⇔ xn = an
(
x0 −

b
1 − a

)
+

b
1 − a

(a , 1)

xn+1 = −3xn + 4 ⇔ xn = (−3)n
(
2 − 4

1 − (−3)

)
+

4
1 − (−3)

⇔ xn = (−3)n + 1.
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Solving second order linear difference equations

A general second order linear difference equation can be
written:

xn+2 + axn+1 + bxn = 0.

Its solution is:

xn = c1λ
n
1 + c2λ

n
2,

where λ1 and λ2 are the solutions of the characteristic
equation:

λ2 + aλ+ b = 0.

The behavior of the system depends on the value of λ1 and λ2.
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Example 1

Solve the following second order linear difference equation with
the initial condition x0 = 1 and x1 = 1:

xn = xn−1 + xn−2.
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Example 1
Solution

This equation can be rewritten

xn+2 − xn+1 − xn = 0. (3)

If we try the solution xn = λn, we obtain

xn+1 = λn+1,

xn+2 = λn+2.

Substituting this into (3), and ignoring the case λ = 0, we
obtain the following characteristic equation:

λ2 − λ − 1 = 0.
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Example 1
Solution⇒Cont...

The roots of the characteristic equation are

λ1 =
1 +
√

5
2

= ϕ (Golden Ratio)

and λ2 =
1 −
√

5
2

= 1 − ϕ.

Successive terms in the Fibonacci sequence are given by:

xn = c1ϕ
n + c2(1 − ϕ)n.
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Example 1
Solution⇒Cont...

The constants c1 and c2 are then determined by the initial
conditions. Thus, if x0 = 1 and x1 = 1, then

1 = c1ϕ
0 + c2(1 − ϕ)0,

1 = c1ϕ
1 + c2(1 − ϕ)1.

Solving for c1 and c2 we get

c1 =
ϕ

2ϕ − 1
and

c2 =
ϕ − 1

2ϕ − 1
.

Hence

xn =
ϕn+1 − (1 − ϕ)n+1

2ϕ − 1
where ϕ =

1 +
√

5
2

.
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Example 2

Solve the difference equation

xn+2 − 5xn+1 + 6xn = 0,

subject to x0 = 2 and x1 = 5.
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Example 2
Solution

If we try the solution xn = λn we obtain

xn+1 = λn+1,

xn+2 = λn+2.

Substituting this into (4), and ignoring the case λ = 0, we
obtain the following characteristic equation:

λ2 − 5λ+ 6 = 0.
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Example 2
Solution

The roots of the characteristic equation are λ1 = 2 and λ2 = 3.

So we may write

xn = c12n + c23n.

In order to find the values of c1 and c2 we use the initial
conditions x0 = 2 and x1 = 5.

Hence, we obtain 2 = c1 + c2 and 5 = 2c1 + 3c2 which yields
c1 = 1 and c2 = 1.

So the solution is xn = 2n + 3n.
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Exercise

Solve uk+2 − 6uk+1 + 9uk = 0 with u0 = 1 and u1 = 4.

The solution is uk = 3k +
1
3

k3k .
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More on solutions of difference equations

The solution of a difference equation of order n shall
generally contain n arbitrary constants.

A solution involving as many arbitrary constants as is the
order of the equation, is called the general solution.

Any solution obtained from the general solution by
assigning particular values to the arbitrary constants is
called a particular solution.
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More on solutions of difference equations
Cont...

Consider the difference equation xn+1 − axn = 0, a , 1.

The relation xn = x0an is a solution of the above difference
equation.

The relation xn = x0an is the general solution.

xn = 3an is a particular solution.
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More on solutions of difference equations
Cont...

Consider the difference equation of the form

xn+r + k1xn+r−1 + ...+ krxn = g(n), (4)

where k1, k2, ..., kr are constants and g(n) is functions of n or
constant, is called linear difference equation with constant
coefficients.

Case I ê g(n) = 0⇒ homogeneous

Case II ê g(n) , 0⇒ non-homogeneous
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More on solutions of difference equations
Case I

The equation (4) in homogeneous form can be rewritten as

(Er + k1Er−1 + ...+ kr)xn = 0, (5)

where E is the shift operator such that Erxn = xn+r .

If f(E) = Er + k1Er−1 + ...+ kr , then f(E) = 0 is called the
auxiliary equation and f(E) is called the characteristic
function of (5).
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More on solutions of difference equations
Case I⇒Cont...

(a) If the auxiliary equation has r distinct roots α1, α2, ..., αr ,
then the general solution of (5) is

xn = c1α
n
1 + c2α

n
2 + ...+ crα

n
r ,

where c1, c2, ..., cr are arbitrary constants.

(b) If the auxiliary equation has real repeated roots, say α1
repeated p times, α2 repeated q times, then the general
solution of (5) is

xn = (c1 + c2n + ...+ cpnp−1)αn
1 + (b1 + b2n + ...+ bqnq−1)αn

2.
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More on solutions of difference equations
Case I⇒Cont...

(c) If the auxiliary equation has non-repeated complex roots,
say two of them be α1 = α+ iβ and α2 = α − iβ then the
general solution of (5) is

xn = rn(c1 cos nθ+ c2 sin nθ)

where r =
√
α2 + β2, θ = tan−1(β/α) and c1, c2 are

arbitrary constants.

(d) If the auxiliary equation has repeated complex roots, say
α+ iβ and α − iβ both repeated twice then the
corresponding two terms of the general solution shall be

rn[(c1 + c2n) cos nθ+ (c3 + c4n) sin nθ].
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Example 1

Solve xn+2 − xn = 0.
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Example 1
Solution

The given equation can be written as

(E2 − 1)xn = 0.

The auxiliary equation is (E2 − 1) = 0 or (E − 1)(E + 1) = 0.

It has two distinct roots 1 and -1.

Therefore, the general solution is c1(−1)n + c2(1)n.
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Example 2

Solve ux+2 − 8ux+1 + 15ux = 0 by the method of difference.
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Example 2
Solution

The given equation can be written as

(E2 − 8E + 15)ux = 0.

The auxiliary equation is E2 − 8E + 15 = 0.

It has two distinct roots 3 and 5.

Thus the general solution is given by ux = c13x + c25x , where
c1, c2 are arbitrary constants.
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Example 3

Solve the difference equation

16xn+2 − 8xn+1 + xn = 0.
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Example 3
Solution

The given equation can be written as

(16E2 − 8E + 1)xn = 0.

The auxiliary equation is 16E2 − 8E + 1 = 0.

It has two equal roots 1/4, 1/4.

Thus the general solution is given by xn = (c1 + c2n)
(1
4

)n
,

where c1 ,c2 are arbitrary constants.
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Example 4

Solve the difference equation

xn+2 − 4xn+1 + 13xn = 0.
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Example 4
Solution

The given equation can be written as

(E2 − 4E + 13)xn = 0

The auxiliary equation is E2 − 4E + 13 = 0.

It has complex roots 2 + 3i and 2 − 3i.

Thus the general solution is given by

xn = rn(c1 cos nθ+ c2 sin nθ), where

r =
√

4 + 9 =
√

13 and θ = tan−1(3/2).
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Example 5

Solve 9xn+2 + 9xn+1 + 2xn = 0 with x0 = 1 and x1 = 1.
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Example 5
Solution

The given equation can be written as (9E2 + 9E + 2)xn = 0.

The auxiliary equation is 9E2 + 9E + 2 = 0.

It has roots −1/3 and −2/3.

The general solution is

xn = c1(−1/3)n + c2(−2/3)n

x0 = 1 ⇒ c1 + c2 = 1
x1 = 1 ⇒ −c1 − 2c2 = 3

Solving we obtain, c1 = 5 and c2 = −4.

Hence the particular solution is xn = 5
(
−1

3

)n
− 4

(
−2

3

)n
.
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Exercise

(i) un+2 − 2un+1 − 3un = 0.
(ii) 9yn+2 − 6yn+1 + yn = 0 with y0 = 1 and y1 = 1.

Answer
(i) un = c13n + c2(−1)n.
(ii) yn = 3n.(1/3)n.
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More on solutions of difference equations
Case II

The general solution of a non-homogeneous linear
difference equation is found by adding a particular solution
called Particular Integral (P.I.) of the non-homogeneous
equation to the general solution called Complementary
Function (C.F.) of the corresponding homogeneous
equation.

Thus, general solution = C.F. + P.I.
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More on solutions of difference equations
Case II⇒Cont...

Consider equation

f(E)xn = g(n) where
f(E) = Er + k1Er−1 + ...+ kr .

Then the particular integral is given by

P.I =
1

f(E)
.g(n).

It can be evaluated by the method of operators. Various cases
are given below:
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More on solutions of difference equations
Case II⇒Cont...

Case (a) ê When g(n) = an, a is a constant

If f(a) , 0⇒ P.I=
1

f(E)
.an =

1
f(a)
.an.

If f(a) = 0 then for the equation

(i) (E − a)xn = an ⇒ P.I=
1

E − a
.an = n.an−1.

(ii) (E − a)2xn = an ⇒ P.I=
n(n − 1)

2!
.an−2.

(iii) (E − a)3xn = an ⇒ P.I=
n(n − 1)(n − 2)

3!
.an−3 and so on.
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More on solutions of difference equations
Case II⇒Cont...

Case (b-I) ê When g(n) = sinαn

P.I =
1

f(E)
. sinαn =

1
f(E)

[
e iαn − e−iαn

2i

]
=

1
2i

[
1

f(E)
.e iαn − 1

f(E)
.e−iαn

]
=

1
2i

[
1

f(E)
.an − 1

f(E)
.bn

]
where a = e iα and b = e−iα.

Now it is similar to Case (a).
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More on solutions of difference equations
Case II⇒Cont...

Case (b-II) ê When g(n) = cosαn

P.I =
1

f(E)
. cosαn =

1
f(E)

[
e iαn + e−iαn

2

]
=

1
2

[
1

f(E)
.e iαn +

1
f(E)

.e−iαn
]

=
1
2

[
1

f(E)
.an +

1
f(E)

.bn
]

where a = e iα and b = e−iα.

Now it is similar to Case (a).
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More on solutions of difference equations
Case II⇒Cont...

Case (c) ê When g(n) = np

P.I =
1

f(E)
.np =

1
f(1 +∆)

.np

The above P.I. is evaluated in two steps.

Using Binomial theorem, expand [f(1+∆)]−1 upto the term
∆p.

Express np in the factorial form and operate the expansion
terms on it.
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More on solutions of difference equations
Case II⇒Cont...

Case (d) ê When g(n) = an.G(n), G(n) being a polynomial of
degree n and a is a constant.

P.I =
1

f(E)
.anG(n) = an.

1
f(aE)

.G(n)

which is evaluated using Case (c).
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Example 1

Solve (E2 − 5E + 6)xn = 4n.
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Example 1
Solution

Auxiliary equation is E2 − 5E + 6 = 0.

Its roots are 2 and 3.

C.F. = c12n + c23n

P.I. =
1

E2 − 5E + 6
.4n (put E = 4)

=
1

42 − 5 × 4 + 6
.4n

=
1
2
.4n

Hence the general solution is given by xn = c12n + c23n +
1
2
.4n
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Example 2

Solve (E2 − 4E + 4)xn = 2n.
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Example 2
Solution

Auxiliary equation is E2 − 4E + 4 = 0.

Its roots are 2 and 2.

C.F. = (c1 + c2n).2n

P.I. =
1

E2 − 4E + 4
.2n =

1
(E − 2)2 .2

n (case fails)

=
n(n − 1)

2!
.2n−2 ((using (ii))

=
n(n − 1)

8
.2n.

Hence the general solution is given by

xn = (c1 + c2n).2n +
n(n − 1)

8
.2n
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Example 3

Solve 2xn+2 + 3xn+1 + xn = cos 2n.
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Example 3
Solution

The given equation can be written as

(2E2 + 3E + 1)xn = cos 2n.

The auxiliary equation is 2E2 + 3E + 1 = 0.

It has roots are 1 and 1/2.

C.F.=c1(−1)n + c2(−1/2)n.
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Example 3
Solution⇒Cont...

P.I =
1

2E2 + 3E + 1
. cos 2n

=
1

2E2 + 3E + 1
.

[
e i2n + e−i2n

2

]
=

1
2

[ 1
2E2 + 3E + 1

.e i2n +
1

2E2 + 3E + 1
.e−i2n

]
=

1
2

[ 1
2e i4 + 3e i2 + 1

.e i2n +
1

2e−i4 + 3e−i2 + 1
.e−i2n

]
=

1
2
.
(2e−i4 + 3e−i2 + 1)e i2n + (2e i4 + 3e i2 + 1)e−i2n

(2e i4 + 3e i2 + 1).(2e−i4 + 3e−i2 + 1)

=
1
2
.
2 cos(4 − 2n) + 3 cos(2 − 2n) + cos 2n

2 cos 4 + 9 cos 2 + 12
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Example 3
Solution⇒Cont...

Hence the general solution is given by

c1(−1)n+c2(−1/2)n+
1
2
.
2 cos(4 − 2n) + 3 cos(2 − 2n) + cos 2n

2 cos 4 + 9 cos 2 + 12
.
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Example 4

Solve xn+2 − xn+1 − 2xn = n2.
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Example 4
Solution

The given equation can be written as (E2 − E − 2)xn = n2.

The auxiliary equation is E2 − E − 2 = 0.

It has roots are -1 and 2.

Therefore C.F.=c1(−1)n + c2(2)n.
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Example 4
Solution⇒Cont...

P.I =
1

E2 − E − 2
.n2

=
1

(1 +∆)2 − (1 +∆) − 2
.n2

=
1

∆2 +∆ − 2
.n2

= −1
2

[
1 −

(
∆2 +∆

2

)]−1

.n2

= −1
2

1 +

(
∆2 +∆

2

)
+

(
∆2 +∆

2

)2

+ ...

 .n2
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Example 4
Solution⇒Cont...

= −1
2

[
1 +

∆2

2
+

∆

2
+

∆2

4
+ ...

]
.n2

= −1
2

[
1 +

∆

2
+

3
4
∆2 + ...

]
.n2

= −1
2

[
1 +

∆

2
+

3
4
∆2 + ...

]
.(n(2) + n(1))

= −1
2

[
{n(2) + n(1)}+ 1

2
{2n(1) + 1}+ 3

4
{2.1.n(0)}

]
= −1

2
(n2 + n + 2)

NB: Refer following web link for more details on factorial form.
http://www.fq.math.ca/Scanned/16-1/brousseau.pdf
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Example 4
Solution⇒Cont...

Hence the general solution is given by

c1(−1)n + c2(2)n − 1
2
(n2 + n + 2).

Department of Mathematics University of Ruhuna — Mathematical Modelling-II(AMT221β/IMT221β) 147/148



Thank you !
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