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Indefinite integral

▶ The command, integrate(expr, var) can be used to find
indefinite integral of expr with respect to variable var.

▶
∫

expr d(var) ⇒ integrate(expr, var).

▶ The indefinite integral returned by integrate does not include
the arbitrary constant of integration.

▶ If integrate does not succeed, then the return value is the
noun form of the integral or an expression containing one or
more noun forms.

▶ The noun form is displayed with an integral sign.
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Indefinite integral
Examples

(i)

∫
x2 dx

(ii)

∫
(x4 + 2x + 4) dx

(iii)

∫ √
x dx

(iv)

∫
sin x cos x dx

(v)

∫
e2x dx

(vi)

∫
et

2
dt

(vii)

∫
sin3 x dx

(viii)

∫
(b2 − x2)−1/2 dx

(ix)

∫
tan(ln(x)) dx

(x)

∫
cos(ln(u)) du
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Definite integral

▶ The command, integrate(expr, var, a, b) can be used to
find definite integral of expr with respect to variable var, with
limits of integration a and b.

▶
∫ b

a
expr d(var) ⇒ integrate(expr, var, a, b).

▶ If integrate does not succeed, then the return value is the
noun form of the integral or an expression containing one or
more noun forms.

▶ The noun form is displayed with an integral sign.
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Definite integral
Examples

(i)

∫ 3

1
x3 dx

(ii)

∫ 2

0
(x6 + 8x + 9) dx

(iii)

∫ π

0
sin x cos x dx

(iv)

∫ 2

−2
et

2
dt

(v)

∫ 2

1
tan(ln(x)) dx

(vi)

∫ 1

−1
sin(ln(u)) du
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Multiple integrals

▶ Multiple integrals are evaluated using multiple calls to the
integrate() function.

▶ To evaluate double integrals, integrate() function should be
called two times.

▶
∫ d

c

∫ b

a
expr dxdy ⇒ integrate(integrate(expr,x,a,b),y,c,d).
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Multiple integrals
Examples

Evaluate the following double integrals.

(i)

∫ 3

0

∫ 2

1
x2ydydx

(ii)

∫ 2

1

∫ 3

0
x2ydxdy

(iii)

∫ 3

1

∫ 1

0
(1− 4xy)dxdy

(iv)

∫ 2

0

∫ π/2

0
x sin ydydx
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Partial fractions

▶ The command partfrac(expr,var), can be used to get partial
fractions of a given expression expr with respect to variable
var.

▶ If there is more than one variable, the variable of interest
must be specified.
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Partial fractions
Examples

Find partial fractions of following expressions.

(i)
3x + 5

x2 + 3x + 2

(ii)
3x + 1

(x + 1)2

(iii)
4x − 1

x2 − 4x + 4

(iv)
(x − 1)

(x + 1)(x2 + 1)

(v)
3n2 + 2n

n3 − 3n2 + 2n − 6

(vi)
2xy3 − 2y3 + 6x2y2 + 5xy2 − 4x3y − 2x2y − 8x4

xy3 − x2y2 − 2x3y
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Both side limits

▶ The command, limit(expr,x,a) computes the limit of a given
expression expr when variable x approaches a.

▶ limx→a expr ⇒ limit(expr,x,a).

▶ It requires an expression, name of the variable with the limit
point to approach.
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Both side limits
Examples

(i) limx→2 5

(ii) limx→3(4x)

(iii) limx→−1(x + 4)

(iv) limt→2(t − 1)

(v) limθ→0
sin θ

θ
(vi) limx→4(1/x)
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One side limits

▶ It is also possible to compute limits from above and below by
adding a forth argument.

▶ It may have the respective values plus for limits from above
and minus for limits from below.

▶ limx→a+ expr ⇒ limit(expr,x,a,plus).

▶ limx→a− expr ⇒ limit(expr,x,a,minus).
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One side limits
Examples

(i) limx→0+ ln x

(ii) limx→0+
x

|x |

(iii) limx→0−
x

|x |

(iv) limx→0
x

|x |
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Thank You
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