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What is infinity?

I Infinity is the idea of something that has no end.

I Infinity is not a real number, it is an idea.

I That is used to represent something without an end.

I Infinity cannot be measured.

I Infinity is greater than any real number.

I We use symbool ∞ to represent infinity.
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Special properties of infinity

1. ∞+∞ = ∞
2. −∞+ (−∞) = −∞
3. ∞×∞ = ∞
4. −∞×−∞ = ∞

5. −∞×∞ = −∞
6. x +∞ = ∞
7. −∞+ x = −∞
8. x − (−∞) = ∞
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Indeterminate form in Mathematics

I The term ”indeterminate” is sometimes used as a synonym for
unknown or variable.

I A mathematical expression can also be said to be
indeterminate if it is not definitively or precisely determined.

I There are seven indeterminate forms involving 0, 1, and ∞.

I They are,
0

0
, 0×∞,

∞
∞

,∞−∞, 00,∞0, 1∞.
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What is function?

I A function is something like a machine.

I It has an input and an output.

I The output is related somehow to the input.
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What is function?
Cont...

I It is useful to give a function a name.

I f (x) is the classic way of writing a function.

I The most common name is f , but you can have other names
like g , h, v , ... etc.
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Limits
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Introduction

I In some situations, we cannot work something out directly.

I But we can see how it behaves as we get closer and closer.

I Let’s consider below function as an example:

f (x) =
(x2 − 1)

(x − 1)
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Cont...

I Let’s work it out for x=1:

f (1) =
(12 − 1)

(1− 1)

=
0

0

I We don’t really know the value of 0/0.

I So we need another way of answering this.

I The limits can be used to give answer in such a situations.
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Cont...

Instead of trying to work it out for x=1, let’s try approaching it
closer and closer from x < 1:

x
(x2 − 1)

(x − 1)
0.5 1.50000
0.9 1.90000

0.99 1.99000
0.999 1.99900

0.9999 1.99990
0.99999 1.99999

... ...
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Cont...

Instead of trying to work it out for x=1, let’s try approaching it
closer and closer from x > 1:

x
(x2 − 1)

(x − 1)
1.5 2.50000
1.1 2.10000

1.01 2.01000
1.001 2.00100

1.0001 2.00010
1.00001 2.00001

... ...
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Cont...

I Now we can see that as x gets close to 1, then
(x2 − 1)/(x − 1) gets close to 2.

I When x = 1 we don’t know the answer.

I But we can see that it is going to be 2.

Department of Mathematics University of Ruhuna Mathematics for Biology



Outline

Cont...

I We want to give the answer ”2” but can’t, so instead
mathematicians say exactly what is going on by using the
special word ”limit”.

The limit of (x2 − 1)/(x− 1) as x approaches 1 is 2

I It can be written symbolicaly as:

lim
x→1

x2 − 1

x − 1
= 2.
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Properties of limit

Suppose f (x) and g(x) are functions of x and a and c are
constants. Then we have following properties for limit.

1. limx→a c = c .

2. limx→a cx = c limx→a x .

3. limx→a [f (x) + g(x)] = limx→a f (x) + limx→a g(x).

4. limx→a [f (x)− g(x)] = limx→a f (x)− limx→a g(x).

5. limx→a [f (x).g(x)] = (limx→a f (x)) . (limx→a g(x)).

6. limx→a

(
f (x)

g(x)

)
=

limx→a f (x)

limx→a g(x)
.
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Properties of limit
Examples

Find the following limits:

(i) limx→2 5.

(ii) limx→3(4x).

(iii) limx→−1(x + 4).

(iv) limt→2(t − 1).

(v) limx→2(x
2).

(vi) limx→4(1/x).
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Example 1

Find the limit of (4− 3x)/(3 + x) as,

(i) x � 1.

(ii) x � 4/3.

(iii) x � −3.

(iv) x � 0.
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Example 2

Find the following limits:

(i) limx→0
x3 − 7x2 − 3x

x
.

(ii) limx→1
x2−1
x−1 .

(iii) limx→2
x2 − 4

x − 2
.

(iv) limx→a
x2 − a2

x − a
.

(v) limt→1
2− 2t2

t − 1
.

(vi) limt→−1
2− 2t2

t − 1
.
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Example 3

Find the following limits:

(i) limx→∞(5x).

(ii) limx→∞(5x + 7).

(iii) limx→∞(2x − 100).

(iv) limx→−∞(2x).

(v) limx→∞

(
2x

x + 1

)
.

(vi) limx→∞

(
x

2x + 1

)
.

(vii) limx→∞

(
4x2 + x + 1

3x2 + 2x + 1

)
.
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Excercise

Show the followings:

(i) limx→−1(5x + 4) = −1.

(ii) limx→1(5x
2 +7x +3) = 15.

(iii) limx→−1
x2 + 5x + 3

2x
=

1

2
.

(iv) limx→∞
2x2 + 5x + 3

x2 + 6x + 9
= 2.

(v) limx→∞

(
2x2 + x

3x2 + 4

)
=

2

3
.

(vi) limx→3
x2 − 5x + 6

x − 3
= 1.

(vii) limx→3

(
x2 − 9

x − 3

)
= 6.
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Thank You
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