What is a Function? A function relates an input to an output. It is like a machine that has an input and an output. And the output is related somehow to the input. " $f(x) = \dots$ " is the classic way of writing a function. And there are other ways, as you will see! ## Input, Relationship, Output I will show you many ways to think about functions, but there will always be three main parts: - The input - · The relationship - The output Example: "Multiply by 2" is a very simple function. Here are the three parts: | Input | Relationship | Output | |-------|--------------|--------| | 0 | × 2 | 0 | | 1 | × 2 | 2 | | 7 | × 2 | 14 | | 10 | × 2 | 20 | | | | | For an input of 50, what would be the output? # Some Examples of Functions - x² (squaring) is a function - x^3+1 is also a function - Sine, Cosine and Tangent are functions used in trigonometry - and there are lots more! But we are not going to look at specific functions instead we will look at the **general idea** of a function. #### Names First, it is useful to give a function a **name**. The most common name is "f", but you can have other names like "g" ... or even "marmalade" if you want. But let's use "f": You would say "f of x equals x squared" what goes into the function is put inside parentheses () after the name of the function: So f(x) shows you the function is called "f", and "x" goes in And you will often see what a function does with the input: $f(x) = x^2$ shows you that function "f" takes "x" and squares it. Example: with $f(x) = x^2$: - an input of 4 - becomes an output of 16. In fact we can write f(4) = 16. ### The "x" is Just a Place-Holder! Don't get too concerned about "x", it is just there to show you where the input goes and what happens to it. It could be anything! So this function: $$f(x) = 1 - x + x^2$$ Would be the same function if I wrote: - $f(q) = 1 q + q^2$ - $h(A) = 1 A + A^2$ - $w(\theta) = 1 \theta + \theta^2$ It is just there so you know where to put the values: $$f(2) = 1 - 2 + 2^2 = 3$$ ### Sometimes There is No Function Name Sometimes a function has no name, and you might just see something like: $$y = x^2$$ But there is still: - an input (x) - a relationship (squaring) - and an output (y) # Relating At the top I said that a function was **like** a machine. But a function doesn't really have belts or cogs or any moving parts - and it doesn't actually destroy what you put into it! A function *relates* an input to an output. Saying "f(4) = 16" is like saying 4 is somehow related to 16. Or $4 \rightarrow 16$ Example: this tree grows 20 cm every year, so the height of the tree is **related** to its age using the function **h**: $$h(age) = age \times 20$$ So, if the age is 10 years, the height is: 11/4/13 | h(10) = | = 10 × | 20 = | 200 | cm | |---------|--------|------|-----|----| |---------|--------|------|-----|----| Here are some example values: | age | $h(age) = age \times 20$ | |-----|--------------------------| | 0 | 0 | | 1 | 20 | | 3.2 | 64 | | 15 | 300 | | | ••• | # What Types of Things Do Functions Process? "Numbers" seems an obvious answer, but which numbers? For example, the tree-height function $h(age) = age \times 20$ makes no sense for an age less than zero. ... it could also be letters ("A" \rightarrow "B"), or ID codes ("A6309" \rightarrow "Pass") or stranger things. So we need something **more powerful**, and that is where <u>sets</u> come in: A set is a collection of things. Here are some examples: Set of even numbers: {..., -4, -2, 0, 2, 4, ...} Set of clothes: {"hat","shirt",...} Set of prime numbers: {2, 3, 5, 7, 11, 13, 17, ...} Positive multiples of 3 that are less than 10: {3, 6, 9} Each individual thing in the set (such as "4" or "hat") is called a member, or element. So, a function takes **elements of a set**, and gives back **elements of a set**. # A Function is Special #### But a function has **special rules**: - It must work for **every** possible input value - And you can only have one relationship for each input value This can be said in one definition: #### Formal Definition of a Function A function relates **each element** of a set with **exactly one** element of another set (possibly the same set). ## The Two Important Things! 1. "...each element..." means that every element in **X** is related to some element in **Y**. We say that the function **covers** X (relates every element of it). (But some elements of **Y** might not be related to at all, which is fine.) 2. "...exactly one..." means that a function is **single valued**. It will not give back 2 or more results for the same input. So " $$f(2) = 7$$ **or** 9" is not right! (one-to-many) This is **NOT** OK in a function (many-to-one) But this **is** OK in a function 5/11 If a relationship does not follow those two rules then it is **not a function** ... it would still be a relationship, just not a function. ### Example: The relationship $x \to x^2$ Could also be written as a table: | X: x | Y: x ² | |------|-------------------| | 3 | 9 | | 1 | 1 | | 0 | 0 | | 4 | 16 | | -4 | 16 | | | | #### It is a function, because: - Every element in X is related to Y - No element in X has two or more relationships So it follows the rules. (Notice how both 4 and -4 relate to 16, which is allowed.) ### Example: This relationship is **not** a function: It is a **relationship**, but it is **not a function**, for these reasons: - Value "3" in X has no relation in Y - Value "4" in X has no relation in Y - Value "5" is related to more than one value in Y (But the fact that "6" in Y is not related to does not matter) #### Vertical Line Test On a graph, the idea of **single valued** means that no vertical line would ever cross more than one value. If it **crosses more than once** it is still a valid curve, but it would **not be a function**. Some types of functions have stricter rules, to find out more you can read <u>Injective</u>, <u>Surjective</u> and <u>Bijective</u> # Infinitely Many My examples have just a few values, but functions usually work on sets with infinitely many elements. Example: $y = x^3$ - The input set "X" is all Real Numbers - The output set "Y" is also all the Real Numbers I can't show you ALL the values, so I just give a few as an example: | X: x | Y: x ³ | |-----------|-------------------| | -2 | -8 | | -0.1 | -0.001 | | 0 | 0 | | 1.1 | 1.331 | | 3 | 27 | | and so on | and so on | ## Domain, Codomain and Range In our examples above - the set "X" is called the **Domain**, - the set "Y" is called the **Codomain**, and - the set of elements that get pointed to in Y (the actual values produced by the function) is called the **Range**. We have a special page on Domain, Range and Codomain if you want to know more. # So Many Names! Functions have been used in mathematics for a very long time, and lots of different names and ways of writing functions have come about. Here are some common terms you should get familiar with: Example: with $z = 2u^3$: - "u" could be called the "independent variable" - "z" could be called the "dependent variable" (it **depends on** the value of u) Example: with f(4) = 16: - "4" could be called the "argument" - "16" could be called the "value of the function" ## Ordered Pairs I said I would show you many ways to think about functions, and here is another way: You can write the input and output of a function as an "ordered pair", such as (4,16). They are called **ordered** pairs because the input always comes first, and the output second: (input, output) So it looks like this: (x, f(x)) Example: (4,16) means that the function takes in "4" and gives out "16" #### Set of Ordered Pairs A function can then be defined as a **set** of ordered pairs: Example: $\{(2,4), (3,5), (7,3)\}$ is a function that says "2 is related to 4", "3 is related to 5" and "7 is related 3". Also, notice that: - the domain is **{2,3,7}** (the input values) - and the range is **{4,5,3}** (the output values) But the function has to be single valued, so we also say "if it contains (a, b) and (a, c), then b must equal c" Which is just a way of saying that an input of "a" cannot produce two different results. Example: $\{(\mathbf{2},\mathbf{4}), (\mathbf{2},\mathbf{5}), (7,3)\}$ is **not** a function because $\{2,4\}$ and $\{2,5\}$ means that 2 could be related to 4 **or** 5. In other words it is not a function because it is not single valued #### A Benefit of Ordered Pairs We can graph them... ... because they are also coordinates! So a set of coordinates is also a function (if they follow the rules above, that is) ### A Function Can be in Pieces You can create functions that behave differently depending on the input value Example: A function with two pieces: • when x is less than 0, it gives 5, • when x is 0 or more it gives x^2 Here are some example values: | х | У | |----|----| | -3 | 5 | | -1 | 5 | | 0 | 0 | | 2 | 4 | | 4 | 16 | | | | Read more at Piecewise Functions. # Explicit vs Implicit Before I finish, I would like to mention the terms "explicit" and "implicit". "Explicit" is when the function shows you how to go directly from x to y, such as: $$y = x^3 - 3$$ When you know x, you can find y That is the classic y = f(x) style. "Implicit" is when it is not given directly such as: $$x^2 - 3xy + y^3 = 0$$ When you know x, how do you find y? It may be hard (or impossible!) to go directly from x to y. "Implicit" comes from "implied", in other words shown indirectly. ### Graphina - The <u>Function Grapher</u> can only handle explicit functions, - The Equation Grapher can handle both types (but takes a little longer, and sometimes gets it wrong). #### Conclusion - a function **relates** inputs to outputs - a function takes elements from a set (the domain) and relates them to elements in a set (the codomain). - all the outputs (the actual values related to) are together called the range - a function is a special type of relation where: - every element in the domain is included, and - any input produces only one output (not this or that) - an input and its matching output are together called an **ordered pair** - so a function can also be seen as a **set of ordered pairs** Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 <u>Search</u> :: <u>Index</u> :: <u>About</u> :: <u>Contact</u> :: <u>Contribute</u> :: <u>Cite This Page</u> :: <u>Privacy</u> Copyright © 2012 MathsIsFun.com