### What is a Function?

A function relates an input to an output.



It is like a machine that has an input and an output.

And the output is related somehow to the input.



" $f(x) = \dots$ " is the classic way of writing a function. And there are other ways, as you will see!

## Input, Relationship, Output

I will show you many ways to think about functions, but there will always be three main parts:

- The input
- · The relationship
- The output

Example: "Multiply by 2" is a very simple function.

Here are the three parts:

| Input | Relationship | Output |
|-------|--------------|--------|
| 0     | × 2          | 0      |
| 1     | × 2          | 2      |
| 7     | × 2          | 14     |
| 10    | × 2          | 20     |
|       |              |        |

For an input of 50, what would be the output?

# Some Examples of Functions

- x<sup>2</sup> (squaring) is a function
- $x^3+1$  is also a function

- Sine, Cosine and Tangent are functions used in trigonometry
- and there are lots more!

But we are not going to look at specific functions ...

... instead we will look at the **general idea** of a function.

#### Names

First, it is useful to give a function a **name**.

The most common name is "f", but you can have other names like "g" ... or even "marmalade" if you want.

But let's use "f":



You would say "f of x equals x squared"

what goes into the function is put inside parentheses () after the name of the function:

So f(x) shows you the function is called "f", and "x" goes in

And you will often see what a function does with the input:

 $f(x) = x^2$  shows you that function "f" takes "x" and squares it.

Example: with  $f(x) = x^2$ :

- an input of 4
- becomes an output of 16.

In fact we can write f(4) = 16.

### The "x" is Just a Place-Holder!

Don't get too concerned about "x", it is just there to show you where the input goes and what

happens to it.

It could be anything!

So this function:

$$f(x) = 1 - x + x^2$$

Would be the same function if I wrote:

- $f(q) = 1 q + q^2$
- $h(A) = 1 A + A^2$
- $w(\theta) = 1 \theta + \theta^2$

It is just there so you know where to put the values:

$$f(2) = 1 - 2 + 2^2 = 3$$

### Sometimes There is No Function Name

Sometimes a function has no name, and you might just see something like:

$$y = x^2$$

But there is still:

- an input (x)
- a relationship (squaring)
- and an output (y)

# Relating

At the top I said that a function was **like** a machine. But a function doesn't really have belts or cogs or any moving parts - and it doesn't actually destroy what you put into it!

A function *relates* an input to an output.

Saying "f(4) = 16" is like saying 4 is somehow related to 16. Or  $4 \rightarrow 16$ 

Example: this tree grows 20 cm every year, so the height of the tree is **related** to its age using the function **h**:

$$h(age) = age \times 20$$

So, if the age is 10 years, the height is:

11/4/13



| h(10) = | = 10 × | 20 = | 200 | cm |
|---------|--------|------|-----|----|
|---------|--------|------|-----|----|

Here are some example values:

| age | $h(age) = age \times 20$ |
|-----|--------------------------|
| 0   | 0                        |
| 1   | 20                       |
| 3.2 | 64                       |
| 15  | 300                      |
|     | •••                      |

# What Types of Things Do Functions Process?

"Numbers" seems an obvious answer, but ...



... which numbers?

For example, the tree-height function  $h(age) = age \times 20$  makes no sense for an age less than zero.



... it could also be letters ("A" $\rightarrow$ "B"), or ID codes ("A6309" $\rightarrow$ "Pass") or stranger things.

So we need something **more powerful**, and that is where <u>sets</u> come in:



A set is a collection of things.

Here are some examples:



Set of even numbers: {..., -4, -2, 0, 2, 4, ...} Set of clothes: {"hat","shirt",...}

Set of prime numbers: {2, 3, 5, 7, 11, 13, 17, ...}

Positive multiples of 3 that are less than 10: {3, 6, 9}

Each individual thing in the set (such as "4" or "hat") is called a member, or element.

So, a function takes **elements of a set**, and gives back **elements of a set**.

# A Function is Special

#### But a function has **special rules**:

- It must work for **every** possible input value
- And you can only have one relationship for each input value

This can be said in one definition:



#### Formal Definition of a Function

A function relates **each element** of a set with **exactly one** element of another set (possibly the same set).

## The Two Important Things!

1. "...each element..." means that every element in **X** is related to some element in **Y**.

We say that the function **covers** X (relates every element of it).

(But some elements of **Y** might not be related to at all, which is fine.)

2. "...exactly one..." means that a function is **single valued**. It will not give back 2 or more results for the same input.

So "
$$f(2) = 7$$
 **or** 9" is not right!



(one-to-many)
This is **NOT** OK in a function



(many-to-one)
But this **is** OK in a function

5/11

If a relationship does not follow those two rules then it is **not a function** ... it would still be a relationship, just not a function.

### Example: The relationship $x \to x^2$



Could also be written as a table:

| X: x | Y: x <sup>2</sup> |
|------|-------------------|
| 3    | 9                 |
| 1    | 1                 |
| 0    | 0                 |
| 4    | 16                |
| -4   | 16                |
|      |                   |

#### It is a function, because:

- Every element in X is related to Y
- No element in X has two or more relationships

So it follows the rules.

(Notice how both 4 and -4 relate to 16, which is allowed.)

### Example: This relationship is **not** a function:



It is a **relationship**, but it is **not a function**, for these reasons:

- Value "3" in X has no relation in Y
- Value "4" in X has no relation in Y
- Value "5" is related to more than one value in Y

(But the fact that "6" in Y is not related to does not matter)



#### Vertical Line Test

On a graph, the idea of **single valued** means that no vertical line would ever cross more than one value.

If it **crosses more than once** it is still a valid curve, but it would **not be a function**.

Some types of functions have stricter rules, to find out more you can read <u>Injective</u>, <u>Surjective</u> and <u>Bijective</u>

# Infinitely Many

My examples have just a few values, but functions usually work on sets with infinitely many elements.

Example:  $y = x^3$ 

- The input set "X" is all Real Numbers
- The output set "Y" is also all the Real Numbers

I can't show you ALL the values, so I just give a few as an example:

| X: x      | Y: x <sup>3</sup> |
|-----------|-------------------|
| -2        | -8                |
| -0.1      | -0.001            |
| 0         | 0                 |
| 1.1       | 1.331             |
| 3         | 27                |
| and so on | and so on         |

## Domain, Codomain and Range

In our examples above

- the set "X" is called the **Domain**,
- the set "Y" is called the **Codomain**, and
- the set of elements that get pointed to in Y (the actual values produced by the function) is called the **Range**.

We have a special page on Domain, Range and Codomain if you want to know more.

# So Many Names!

Functions have been used in mathematics for a very long time, and lots of different names and ways of writing functions have come about.

Here are some common terms you should get familiar with:



Example: with  $z = 2u^3$ :

- "u" could be called the "independent variable"
- "z" could be called the "dependent variable" (it **depends on** the value of u)

Example: with f(4) = 16:

- "4" could be called the "argument"
- "16" could be called the "value of the function"

## Ordered Pairs

I said I would show you many ways to think about functions, and here is another way:

You can write the input and output of a function as an "ordered pair", such as (4,16).

They are called **ordered** pairs because the input always comes first, and the output second:

(input, output)

So it looks like this:

(x, f(x))

Example:

(4,16) means that the function takes in "4" and gives out "16"

#### Set of Ordered Pairs

A function can then be defined as a **set** of ordered pairs:

Example:  $\{(2,4), (3,5), (7,3)\}$  is a function that says

"2 is related to 4", "3 is related to 5" and "7 is related 3".

Also, notice that:

- the domain is **{2,3,7}** (the input values)
- and the range is **{4,5,3}** (the output values)

But the function has to be single valued, so we also say

"if it contains (a, b) and (a, c), then b must equal c"

Which is just a way of saying that an input of "a" cannot produce two different results.

Example:  $\{(\mathbf{2},\mathbf{4}), (\mathbf{2},\mathbf{5}), (7,3)\}$  is **not** a function because  $\{2,4\}$  and  $\{2,5\}$  means that 2 could be related to 4 **or** 5.

In other words it is not a function because it is not single valued



#### A Benefit of Ordered Pairs

We can graph them...

... because they are also coordinates!

So a set of coordinates is also a function (if they follow the rules above, that is)

### A Function Can be in Pieces

You can create functions that behave differently depending on the input value

Example: A function with two pieces:

• when x is less than 0, it gives 5,

• when x is 0 or more it gives  $x^2$ 



Here are some example values:

| х  | У  |
|----|----|
| -3 | 5  |
| -1 | 5  |
| 0  | 0  |
| 2  | 4  |
| 4  | 16 |
|    |    |

Read more at Piecewise Functions.

# Explicit vs Implicit

Before I finish, I would like to mention the terms "explicit" and "implicit".

"Explicit" is when the function shows you how to go directly from x to y, such as:

$$y = x^3 - 3$$

When you know x, you can find y

That is the classic y = f(x) style.

"Implicit" is when it is not given directly such as:

$$x^2 - 3xy + y^3 = 0$$

When you know x, how do you find y?

It may be hard (or impossible!) to go directly from x to y.

"Implicit" comes from "implied", in other words shown indirectly.

### Graphina

- The <u>Function Grapher</u> can only handle explicit functions,
- The Equation Grapher can handle both types (but takes a little longer, and sometimes gets it

wrong).

#### Conclusion

- a function **relates** inputs to outputs
- a function takes elements from a set (the domain) and relates them to elements in a set (the codomain).
- all the outputs (the actual values related to) are together called the range
- a function is a special type of relation where:
  - every element in the domain is included, and
  - any input produces only one output (not this or that)
- an input and its matching output are together called an **ordered pair**
- so a function can also be seen as a **set of ordered pairs**

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

<u>Search</u> :: <u>Index</u> :: <u>About</u> :: <u>Contact</u> :: <u>Contribute</u> :: <u>Cite This Page</u> :: <u>Privacy</u>

Copyright © 2012 MathsIsFun.com