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Chapter 3

Sequences
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Why do we need sequences?

Sequences are useful in studying functions, spaces, and other
mathematical structures using the convergence properties of
sequences.

In particular, sequences are the basis for series, which are
important in differential equations and analysis.

Sequences are also of interest in their own right and can be
studied as patterns or puzzles, such as in the study of prime
numbers.
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What is a sequence?

A Sequence is a set of objects (usually numbers) that are in
order.

The objects are ”in order” means we are free to define what
order that is.

They could go forwards, backwards or they could alternate.
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Finite and infinite sequensces

A sequence contains members and they are also called
elements, or terms.

If a sequence contains an infinite number of members it is
called an infinite sequence, otherwise it is a finite sequence.
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Finite and infinite sequensces
Examples

(i) {1, 2, 3, 4, · · · } ⇐ An infinite sequence

(ii) {2, 4, 6, 8} ⇐ A finite sequence

(iii) {6, 9, 12, 15, 18, · · · } ⇐ An infinite sequence

(iv) {4, 3, 2, 1} ⇐ A finite sequence

(v) {a, b, c, d , e} ⇐ A finite sequence

(vi) {0, 1, 0, 1, 0, 1, · · · } ⇐ An alternating infinite sequence
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Difference between a set and a sequence

The terms of a sequence are in order. But the order of terms
is not a concern for a set.

The same value can appear many times in a sequence. But in
a set, a value can appear only once.
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Difference between a set and a sequence
Example

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · } is a sequence. The
corresponding set would be {0, 1, 2, 3, 5, 8, 13, 21, 34, · · · }.

{0, 1, 0, 1, 0, 1, · · · } is the sequence of alternating 0s and 1s.
The corresponding set would be just {0, 1}.
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Indexing notation

The terms of a sequence are usually denoted like xn, with the
subscripted letter n being the ”index”.

So the second term of a sequnce might be named x2 and x10
would designate the tenth term.

Sometimes sequences start with an index of n = 0, so the first
term would be x0 and the second term would be x1.
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Indexing notation
Cont...

The indexing notation is a natural notation for sequences
whose elements are related to the index n in a simple way.

Sequences can be indexed beginning and ending from any
integer.

For instance, a finite sequence can be denoted by {xn}kn=1.

The infinity symbol ∞ is often used as the superscript to
indicate the sequence including all integer.

So, an infinite sequence can be denoted by {xn}∞n=1 or (xn) or
(xn)n∈N.
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Indexing notation
Cont...

(i) The sequence of the first 10 square numbers could be written
as {xn}10n=1, xn = n2.

(ii) The sequence of all positive squares is then denoted
{xn}∞n=1, xn = n2.
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Rule of a sequence

A sequence usually has a rule, which is a way to find the value
of each term.

So, the rule should be a formula with n in it (where n is any
term number).
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Rule of a sequence
Cont...

Find missing numbers in following sequences:

(i) 3, 5, 7, 9, 11, 13,

(ii) 1, 4, 9, 16,

(iii) 3, 5, 8, 13, 21,

(iv) 1, 4, 7, 10, 13, 16, 19, 22, 25,
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Rule of a sequence
Cont...

Sequence Rule
3, 5, 7, 9, 11, 13, · · · xn = 2n + 1

1, 4, 9, 16, · · · xn = n2

3, 5, 8, 13, 21, · · · xn = xn−1 + xn−2

1, 4, 7, 10, 13, 16, 19, 22, 25, · · · xn = 3n − 2
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Examples

Write down first five terms of the following sequences.

(i) {2n + 1}

(ii) {3−n}

(iii) {(1 + 1
n )

n}

(iv) {(−1)n}

(v) {(−1/n)n}
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Examples
Solutions

(i) {3, 5, 7, 9, 11}

(ii) {1
3 ,

1
32
, 1
33
, 1
34
, 1
35
}

(iii) {(1 + 1
1)

1, (1 + 1
2)

2, (1 + 1
3)

3, (1 + 1
4)

4, (1 + 1
5)

5}

(iv) {−1, 1,−1, 1,−1}

(v) {−1, 1/4,−1/27, 1/256,−1/3125}
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Special sequences
Arithmetic sequences

In an arithmetic sequence the difference between one term
and the next is a constant.

If the first term is a and the common difference is d , then the
corresponding arithmetic sequence can be written down as
{a, a+ d , a+ 2d , a+ 3d , · · · }.

The rule for the arithmetic sequence is xn = a+ d(n − 1).
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Special sequences
Geometric sequences

In a geometric sequence each term is found by multiplying the
previous term by a constant.

If the first term is a and the common ratio is r , then the
corresponding geometric sequence can be written down as
{a, ar , ar2, ar3, · · · }.

The rule for the geometric sequence is xn = ar (n−1).
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Special sequences
Fibonacci sequence

In mathematics, the Fibonacci sequence are the numbers in
the integer sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · .

The next number is found by adding the two numbers before
it together.

The rule for the Fibonacci sequence is xn = xn−1 + xn−2.
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Monotonic sequences

Many sequences have the property that, as n increases thier
terms are either increasing or decreasing.

For example, the sequence {2n + 1} has terms 3, 5, 7, 9, · · · ,
which are increasing, whereas the sequence { 1

n} has terms
{1, 12 ,

1
3 ,

1
4 , · · · } which are decreasing.

The sequence {(−1)n} is neither increasing nor decreasing.

We now give a precise meaning to these words increasing and
decreasing, and introduce the term monotonic.
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Definition
Monotonic sequences

A sequence {xn} is

1 constant, if xn+1 = xn, for n = 1, 2, 3, · · · ;

2 increasing, if xn+1 ≥ xn, for n = 1, 2, 3, · · · ;

3 decreasing, if xn+1 ≤ xn, for n = 1, 2, 3, · · · ;

4 monotonic, if {xn} is either increasing or decreasing.
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Definition
Strictly monotonic sequences

A sequence {xn} is

1 strictly increasing, if xn+1 > xn, for n = 1, 2, 3, · · · ;

2 strictly decreasing, if xn+1 < xn, for n = 1, 2, 3, · · · ;

3 strictly monotonic, if {xn} is either strictly increasing or
strictly decreasing.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 22/172



Strictly monotonic sequences
Example 1

1 2, 2, 2, 2, · · · ⇐ constant sequence

2 1, 2, 3, 4, · · · ⇐ strictly increasing sequence

3 4, 3, 2, 1 · · · ⇐ strictly decreasing sequence

4 1, 1, 2, 2, 3, 3, 4, 4, · · · ⇐ increasing but not strictly
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Strictly monotonic sequences
Example 2

Determine which of the following sequences {xn} are monotonic:

(a) xn = 2n − 1, n = 1, 2, · · ·

(b) xn = 1
n , n = 1, 2, · · ·

(c) xn = (−1)n, n = 1, 2, · · ·
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Strictly monotonic sequences
Example 2 ⇒ Solution

(a) The sequence {2n− 1} is monotonic because xn = 2n− 1 and
xn+1 = 2(n + 1)− 1 = 2n + 1, so that

xn+1 − xn = (2n + 1)− (2n − 1) = 2 > 0, for n = 1, 2, · · ·

Thus {2n − 1} is increasing.

In fact, strictly increasing.
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Strictly monotonic sequences
Example 2 ⇒ Solution ⇒ Cont...

(b) The sequence { 1
n} is monotonic because xn = 1

n and
xn+1 =

1
n+1 , so that

xn+1 − xn =
1

n + 1
− 1

n
=

−1

(n + 1)n
< 0, for n = 1, 2, · · ·

Thus { 1
n} is decreasing.
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Strictly monotonic sequences
Example 2 ⇒ Solution ⇒ Cont...

(c) The sequence {(−1)n} is not monotonic.

In fact, x1 = −1, x2 = 1 and x3 = −1.

Hence x3 < x2, which means that {xn} is not increasing.

Also, x2 > x1, which means that {xn} is not decreasing.

Thus {(−1)n} is neither increasing nor decreasing, and so is
not monotonic.
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Bounded and unbounded sequences

A sequence x1, x2, x3, · · · is bounded if there exist a number
M > 0 such that

|xn| ≤ M

for every natural number n. Otherwise we call sequence is
unbounded.

This means that regardless of what term we are looking at,
the absolute value of that term must be less than M.
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Bounded and unbounded sequences
Example 1

Consider the sequence {2−n}∞n=1.

The first few terms of the sequence are 1
2 ,

1
22
, 1
23
, 1
24
, · · · .

It is clear that any value greater than 1
2 will bound this sequence.

Therefore, this is an example for a bounded sequence.
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Bounded and unbounded sequences
Example 2

Consider the sequence

an =

{
1 + 1

2n if n is odd
2n if n is even

The first few terms of the sequence are 3
2 , 4,

9
8 , 16, · · · .

Regardless of the value of M that you choose it is still possible to
find a value of n such that 2n > M.

Therefore this sequence is unbounded.
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Convergent sequences and divergent sequences

The limit of a sequence is the value that the terms of a
sequence ”tend to”.

If such a limit exists, the sequence is called convergent.

A sequence which does not converge is said to be divergent.
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Convergent sequences and divergent sequences
Example 1

Consider the sequence xn = { 1
n}.

The first few terms of the sequence can be written down as
{1, 12 ,

1
3 ,

1
4 ,

1
5 ,

1
6 , · · · }.

Examining the list above, the terms of the sequence seem to
be getting smaller and smaller and appear to be tending
towards 0.

We might speculate that the sequence {xn} converges to 0.
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Convergent sequences and divergent sequences
Example 1 ⇒ Cont...

Visually we can see that the sequence seems to be converging
towards 0.

That is, as n gets bigger, {xn} gets closer to 0.
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Convergent sequences and divergent sequences
Example 2

Consider the sequence xn+1 = {4(1− xn)xn}, where x1 = 0.3.

The first few terms of the sequence can be written down as
{0.3, 0.84, 0.5376, 0.994345, 0.0224922,
0.0879454, 0.320844, 0.871612 · · · }.

Examining the list above, we can see that sequence does not
tend to any value.

We might speculate that the sequence {xn} diverges.
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Convergent sequences and divergent sequences
Example 2 ⇒ Cont...

The below Figure shows the first 50 terms of the above
sequence.

Even if we compute the first billion terms nothing nice will
happen.
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How do we identify convergent sequences?

In general we need to examine the behaviour of the sequence
as n gets bigger and bigger, in order to determine if it
converges or diverges.

What we have done above is not sufficient to prove a
sequence xn converges to a value.

We will see that the way we examine the behaviour of a
sequence xn, as n gets bigger and bigger, is to take the
limn→∞ xn.
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The idea of convergence

The idea of convergence of a sequence is made precise with the
use the distance on R.

Keep in mind that xn comes near and near a point p means that
the distance |xn − p| keeps steadily getting less and less as n
increases.
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Definition
Convergent sequence

A sequence {xn} is said to converge to a number p if for any
ϵ > 0, there is n0 ∈ N such that |xn − p| < ϵ for every n ≥ n0.

In that case,the number p is said to be limit of the sequence {xn},
and we write,

xn → p, or lim
n→∞

xn = p or lim xn = p.

If {xn} converges, it is called a convergent sequence and if
sequence {xn} does not converge, it is said to be a divergent
sequence and we say {xn} diverges.
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Convergent sequence
Remark

xn → p if given ϵ > 0 , from some nth0 -term onwards all the terms
of the sequence are at a distance < ϵ from p.

In general, checking convergence amounts to finding suitable n0 for
any given ϵ > 0, which will satisfy the requirement |xn − p| < ϵ, for
all n ≥ n0.

For different value of ϵ, the cut-off point n0 will in general, be
different.
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Example 1

Show that the constant sequence {c , c , c , · · · } converges to c .
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Example 1
Solution

For each n, xn = c and given any ϵ > 0, for any choice of n0,
|xn − c | = 0 < ϵ.

Therefore, the costant sequence {c , c , c , · · · } converges to c .
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Example 2

Consider the sequence { 1
n} and show that limn→∞ xn = 0.
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Example 2
Solution

Given an ϵ > 0, let us choose a n0 such that 1
n0

< ϵ.

Now, if n ≥ n0, then we have

|xn − 0| =

∣∣∣∣1n − 0

∣∣∣∣
=

∣∣∣∣1n
∣∣∣∣

=
1

n
≤ 1

n0
< ϵ.

This is exactly what we needed to show to conclude that
limn→∞ xn = 0.
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Example 3

Consider the sequence {n+1
n } and show that limn→∞ xn = 1.
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Example 3
Solution

Given an ϵ > 0, let us choose a n0 such that 1
n0

< ϵ.

Now, if n ≥ n0, then we have

|xn − 1| =

∣∣∣∣n + 1

n
− 1

∣∣∣∣
=

∣∣∣∣1n
∣∣∣∣

=
1

n
≤ 1

n0
< ϵ.

This is exactly what we needed to show to conclude that
limn→∞ xn = 1.
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Example 3
Solution ⇒ Cont...

Given ϵ > 0, we notice that∣∣∣∣n + 1

n
− 1

∣∣∣∣ = 1

n
< ϵ whenever n >

1

ϵ
.

Thus, n0 should be some natural number larger than 1
ϵ . For

example, if ϵ = 1/99, then we may choose n0 to be any positive
integer bigger than 99, and we conclude that∣∣∣∣n + 1

n
− 1

∣∣∣∣ < ϵ =
1

99
whenever n ≥ n0 = 100.

Similarly, if ϵ = 2/999, then 1
ϵ = 499.5, so that∣∣∣∣n + 1

n
− 1

∣∣∣∣ < ϵ =
2

999
whenever n ≥ n0 = 500.

Thus, n0 clearly depends on ϵ.
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Example 4

Consider the sequence xn = (2n+1)
(1−3n) and show that

limn→∞ xn = −2
3 .
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Example 4
Solution

Indeed, if ϵ > 0 is given, we must find a n0, such that if
n ≥ n0 then ∣∣∣∣xn − (−2

3
)

∣∣∣∣ = ∣∣∣∣xn + 2

3

∣∣∣∣ .
Let us examine the quantity

∣∣xn + 2
3

∣∣.∣∣∣∣xn + 2

3

∣∣∣∣ =

∣∣∣∣(2n + 1)

(1− 3n)
+

2

3

∣∣∣∣
=

∣∣∣∣6n + 3 + 2− 6n

3− 9n

∣∣∣∣
=

∣∣∣∣ 5

3− 9n

∣∣∣∣
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Example 4
Solution ⇒ Cont...

∣∣∣∣xn + 2

3

∣∣∣∣ =
5

9n − 3

=
5

6n + 3n − 3

≤ 5

6n

<
1

n
.

for all n ≥ 1.

Therefore, if n0 is an integer for which n0 >
1
ϵ , then∣∣∣∣xn + 2

3

∣∣∣∣ <
1

n
≤ 1

n0
< ϵ.

whenever n ≥ n0, as desired.
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Example 5

Determine whether following sequences are convergent or
divergent.

(a) {n}

(b) {2n}

(c) {(−1)n}

(d) {sin(nπ2 )}n≥1
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Example 5
Solution

(a) The sequence {n} diverges because no matter what p and ϵ
we choose, the inequality |n − p| < ϵ can hold only for finitely
many n.

Extra
Suppose, ϵ = 4 and p = 10 then

|n − p| < ϵ

|n − 10| < 4

−4 < n − 10 < 4

n 3 4 5 6 7 8 9 10 11 12 13 14 15

n − p -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
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Example 5
Solution ⇒ Cont...

(b) The sequence {2n} diverges because no matter what p and ϵ
we choose, the inequality |2n − p| < ϵ can hold only for
finitely many n.

(c) The sequence defined by {(−1)n} is {−1, 1,−1, 1, · · · }, and
this sequence diverges by oscillation because the nth term is
always either 1 or -1. Thus {xn} cannot approach any one
specific number p as n grows large.

(d) The sequence {sin(nπ2 )}n≥1 diverges because the sequence is
{1, 0,−1, 0, 1, 0, · · · } and hence it does not converge to any
number, by the same reasoning as above.
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Null sequences

A sequence {xn} that converges to zero is called a null
sequence.

For example, the sequence { 1
n} is a null sequence because it

converges to zero.
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Definition
Null sequence

A sequence {xn} is a null sequence if; for each positive number ϵ,
there is a number n0 such that |xn| < ϵ, for all n ≥ n0.
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Example 1

Prove that the sequence { 1
n3
} is a null sequence.
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Example 1
Solution

We have to prove that for each positive number ϵ, there is a
number n0 such that∣∣∣ 1

n3

∣∣∣ < ϵ, for all n ≥ n0. (1)

In order to find a suitable value of n0 for (1) to hold, we rewrite

the inequality
∣∣∣ 1
n3

∣∣∣ < ϵ in various equivalent ways until we spy a

value for n0 that will suit our purpose. Now∣∣∣ 1
n3

∣∣∣ < ϵ ⇔ 1

n3
< ϵ

⇔ n3 >
1

ϵ

⇔ n >
1
3
√
ϵ
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Example 1
Solution ⇒ Cont...

If ϵ = 0.4 then 1
3√ϵ

= 1.3572 ⇒ n ≥ n0 = 2

Figure: Sequence diagram
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Example 1
Solution ⇒ Cont...

If ϵ = 0.2 then 1
3√ϵ

= 1.7099 ⇒ n ≥ n0 = 2

Figure: Sequence diagram
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Example 1
Solution ⇒ Cont...

If ϵ = 0.1 then 1
3√ϵ

= 2.1543 ⇒ n ≥ n0 = 3

Figure: Sequence diagram

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 59/172



Example 1
Solution ⇒ Cont...

So, let us choose n0 to be
1
3
√
ϵ
.

With this choice of n0, the above chain of equivalent inequalities

shows us that, if n ≥ n0, then
∣∣∣ 1
n3

∣∣∣ < ϵ.

Thus, with this choise of n0, (1) holds; so { 1
n3
} is indeed null.
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Example 2

Prove that the following sequence is not null

xn =

{
1, if n is odd,
0, if n is even.
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Example 2
Solution

To prove that the sequence is not null, we have to show that it
does not satisfy the definition.

In other words, we must show that the following statement is not
true:

For each positive number ϵ, there is a number n0 such that
|xn| < ϵ, for all n ≥ n0.

So, what we have to show is that the following is true:

For some positive number ϵ, whatever n0 one chooses |xn| ≮ ϵ, for
all n ≥ n0.
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Example 2
Solution ⇒ Cont...

It can also be written as:

There is some positive number ϵ, such that whatever n0 one
chooses |xn| ≮ ϵ, for all n ≥ n0.

So, we need to find some positive number ϵ with such a property.

The sequence diagram provides the clue.
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Example 2
Solution ⇒ Cont...

Figure: Sequence diagram
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Example 2
Solution ⇒ Cont...

Figure: Strip of half-width
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Example 2
Solution ⇒ Cont...

If we choose ϵ = 1
2 , then the point (n, xn) lies outside the strip

(−1
2 ,

1
2) for every odd n.

In other words, whatever, n0 one chooses, the statement

|xn| < ϵ, for all n ≥ n0,

is false.

It follows that the sequence is not a null sequence.
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Example 2
Solution ⇒ Cont... ⇒ Note

There is nothing special about the number 1
2 here.

Any positive value of ϵ less than 1 will serve for our purpose
here.
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Strategy for using the definition of null sequence

1 To show that {xn} is null, solve the inequality |xn| < ϵ to find
a number n0 such that |xn| < ϵ, for all n ≥ n0.

2 To show that {xn} is not null, find one value of ϵ for which
there is no number n0 such that |xn| < ϵ, for all n ≥ n0.
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Combination Rules

We now look at number of Rules for generating new sequences
from old.

1 Power Rule

2 Sum Rule

3 Multiple Rule

4 Product Rule
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Power Rule

If {xn} is a null sequence, where xn ≥ 0, for n = 1, 2, · · · , and if
p > 0, then {xpn } is a null sequence.
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Power Rule
Proof

We want to prove that {xpn } is a null sequence; that is for each
positive number ϵ, there is a number n0 such that

xpn < ϵ, for all n ≥ n0. (2)

We know that {xn} is null, so there is some number n0 such that

xn < ϵ
1
p , for all n ≥ n0. (3)

Taking the pth power of both sides of (3), we obtain the desired
result (2), with the same value n0.
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Power Rule
Examples

Use the Power Rule to show that the following sequences are null:

(a)
{

1
n3

}
(b)

{
1√
n

}
(c)

{
1
5√n

}
(d)

{
1

n
√
7

}
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Power Rule
Examples ⇒ Solution

We simply apply the Power Rule to the sequence { 1
n} that we saw

earlier to be null, using the following positive powers:

(a) p = 3

(b) p = 1
2

(c) p = 1
5

(d) p =
√
7

So, according to the Power Rule, all the given sequences are null
with above p values.
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Sum Rule

If {xn} and {yn} are null sequences, then {xn + yn} is a null
sequence.
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Sum Rule
Proof

We want to prove that the sum {xn + yn} is null, that is for each
positive number ϵ, there is a number n0 such that

|xn + yn| < ϵ, for all n ≥ n0. (4)

We know that {xn} and {yn} are null, so there are numbers n1 and
n2 such that

|xn| <
1

2
ϵ, for all n ≥ n1, and

|yn| <
1

2
ϵ, for all n ≥ n2.

Hence, if n0 = max(n1, n2), then both the previous inequalities
holds, so if we add them we obtain, by the triangle inequality, that

|xn + yn| ≤ |xn|+ |yn| <
1

2
ϵ+

1

2
ϵ = ϵ, for all n ≥ n0.

Thus inequality (4) holds, with this value of n0.
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Sum Rule
Examples

Use the Sum Rule to show that following sequences are null:

(a)
{
1
n + 1

n3

}
(b)

{
1√
n
+ 1

5√n

}
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Sum Rule
Examples ⇒ Solution

We may use known examples of null sequence to verify that the
above sequences are also null. So,

(a) we can say that the sequence
{
1
n + 1

n3

}
is null by applying the

Sum Rule to the null sequences
{
1
n

}
and

{
1
n3

}
.

(b) we can say that the sequence
{

1√
n
+ 1

5√n

}
is null by applying

the Sum Rule to the null sequences
{

1√
n

}
and

{
1
5√n

}
.
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Multiple Rule

If {xn} is a null sequence, then {λxn} is a null sequence for any
real number λ.
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Multiple Rule
Proof

We want to prove that the multiple {λxn} is null, that is for each
positive number ϵ, there is a number n0 such that

|λxn| < ϵ, for all n ≥ n0. (5)

If λ = 0, this is obvious, and so we may assume that λ ̸= 0.
We know that {xn} is null, so there is some number n0 such that

|xn| <
1

|λ|
ϵ, for all n ≥ n0.

Multiplying both sides of this inequality by the positive number |λ|,
this gives us that

|λxn| < ϵ, for all n ≥ n0.

Thus the desired result (5) holds.
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Multiple Rule
Examples

Use the Multiple Rule to show that the following sequences are
null:

(a)
{
39π
n3

}
(b)

{
1

(
√
2+log

√
5) 5√n

}
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Multiple Rule
Examples ⇒ Solution

We may use known examples of null sequence to verify that the
above sequences are also null. So,

(a) we can say that the sequence
{
39π
n3

}
is null by applying the

Multiple Rule to the null sequences
{

1
n3

}
with λ = 39π.

(b) we can say that sequence
{

1
(
√
2+log

√
5) 5√n

}
is null by applying

the Multiple Rule to the null sequences
1
5
√
n
with

λ = 1
(
√
2+log

√
5)
.
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Product Rule

If {xn} and {yn} are null sequences, then {xnyn} is a null sequence.
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Product Rule
Proof

We want to prove that the product {xnyn} is null, that is for each
positive number ϵ, there is a number n0 such that

|xnyn| < ϵ, for all n ≥ n0. (6)

We know that {xn} and {yn} are null, so there are numbers n1 and
n2 such that

|xn| <
√
ϵ, for all n ≥ n1, and

|yn| <
√
ϵ, for all n ≥ n2.

Hence, if n0 = max(n1, n2), then both two previous inequalities
hold; so if we multiply them we obtain that

|xnyn| = |xn| × |yn| <
√
ϵ×

√
ϵ = ϵ, for all n ≥ n0.

Thus inequality (6) holds with this value of n0.
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Product Rule
Examples

Use the Product Rule to show that the following sequences are null:

(a)
{

1
n3(2n−1)

}
(b)

{
1

n4 5√n

}
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Product Rule
Examples ⇒ Solution

We may use known examples of null sequence to verify that the
above sequences are also null. So,

(a) we can say that the sequence
{

1
n3(2n−1)

}
is null by applying

the Product Rule to the null sequences
{

1
n3

}
and

{
1

(2n−1)

}
.

(b) we can say that sequence
{

1
n4 5√n

}
is null by applying the

Product Rule to the null sequences
{

1
n4

}
and

{
1
5√n

}
.
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Combination Rule
Exercises

Use the Combination Rules to show that the following sequences
are null:

(a)

{
1

(2n − 1)5

}

(b)

{
3
7
√
n
+

7

(2n − 1)9

}

(c)

{
1

5n7(2n − 1)
1
6

}
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Basic null sequences

The following sequences are null sequences:

(a)

{
1

np

}
, for p > 0

(b) {cn}, for |c | < 1

(c) {npcn}, for p > 0, |c | < 1

(d)

{
cn

n!

}
, for any real c

(e)

{
np

n!

}
, for p > 0
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Basic null sequences
Examples

(a)

{
1

np

}
, for p > 0 ⇒

{
1

n10

}
(b) {cn}, for |c | < 1 ⇒ {(0.9)n}

(c) {npcn}, for p > 0, |c | < 1 ⇒ {n3(0.9)n}

(d)

{
cn

n!

}
, for any real c ⇒

{
10n

n!

}

(e)

{
np

n!

}
, for p > 0 ⇒

{
n10

n!

}
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Squeeze Rule

If {yn} is a null sequence and

|xn| ≤ yn, for n = 1, 2, · · · ,

then {xn} is a null sequence.
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Squeeze Rule
Proof

We want to prove that {xn} is null; that is for each positive
number ϵ, there is a number n0 such that

|xn| < ϵ, for all n ≥ n0. (7)

We know that {yn} is null, so there is some number n0 such that

|yn| < ϵ, for all n ≥ n0. (8)

We also know that |xn| ≤ yn, for n = 1, 2, · · · , and hence it follows
from (8) that

|xn| (< |yn|) < ϵ, for all n ≥ n0.

Thus inequality (7) holds, as required.
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Squeeze Rule
Example

To illustrate this rule, we look at the sequence diagrams of the two

sequences
{

1√
n

}
and

{
1

1+
√
n

}
.
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Squeeze Rule
Example ⇒ Cont...

Since the

{
1√
n

}
is null and

1

1 +
√
n
<

1√
n
,

it follows from the Squeeze Rule that

{
1

1 +
√
n

}
is also a null

sequence.
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Squeeze Rule
Remark

The trick in using the Squeeze Rule to prove that a given sequence
{xn} is null is to think of a suitable sequence {yn} that dominates
{xn} and is itself null.
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Combination Rules for any convergent sequence

So far we discussed Combination Rules and some other Rules
only for null sequences.

Fortunately, those rules can easily be extended for any other
convergent sequence as well.
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Combination Rules for any convergent sequence
Cont...

If limn→∞ xn = p and limn→∞ yn = q, then

Sum Rule limn→∞(xn + yn) = p + q

Multiple Rule limn→∞(λxn) = λp, for any real number λ

Product Rule limn→∞(xnyn) = pq

Quotient Rule limn→∞

(
xn
yn

)
=

p

q
, provided that q ̸= 0

Reciprocal Rule limn→∞

(
1

xn

)
=

1

p
, provided that p ̸= 0
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Proofs of Combination Rules

We prove the Sum Rule, the Multiple Rule, and the Product Rule
by using the corresponding Combination Rules for null sequences.

In that case

lim
n→∞

xn = p

means that {xn − p} is null.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 96/172



Proofs of Combination Rules
Example

We have already shown that xn = n+1
n is a sequence which

converges to p = 1.

If we consider xn − p then we get xn − p = n+1
n − 1 = 1

n .

We know that 1
n is a null sequence.

It indicates that if we consider xn − p, the resulting sequence
{xn − p} will be a null sequence.
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Proofs of Combination Rules
Example ⇒ Cont...

Figure: Sequence diagrams for n+1
n and 1

n .
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Sum Rule
Example

If limn→∞
n+1
n = 1 and limn→∞

(2n+1)
(3n−1) =

2
3 , then

lim
n→∞

(
n + 1

n
+

(2n + 1)

(3n − 1)

)
= 1 +

2

3
= 1.66667
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Sum Rule
Proof

{xn − p} and {yn − q} are null sequences. Since

(xn + yn)− (p + q) = (xn − p) + (yn − q)

we deduce that {(xn + yn)− (p + q)} is null, by the Sum Rule for
null sequences as follows:

lim
n→∞

((xn + yn)− (p + q)) = lim
n→∞

(xn − p) + lim
n→∞

(yn − q)

lim
n→∞

((xn + yn)− (p + q)) = 0 + 0 = 0

It implies that

lim
n→∞

(xn + yn) = p + q.
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Product Rule
Example

If limn→∞
n+1
n = 1 and limn→∞

(2n+1)
(3n−1) =

2
3 , then

lim
n→∞

(
n + 1

n
× (2n + 1)

(3n − 1)

)
= 1 · 2

3
=

2

3
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Product Rule
Proof

The idea here is to express xnyn − pq in terms of xn − p and yn − q

xnyn − pq = (xn − p)(yn − q) + q(xn − p) + p(yn − q).

Since {xn − p} and {yn − q} are null, we deduce that {xnyn − pq}
is null, by the Combination Rules for null sequences as follows:

lim
n→∞

(xnyn − pq) = lim
n→∞

(xn − p)(yn − q) + lim
n→∞

q(xn − p)

+ lim
n→∞

p(yn − q)

= 0 + 0 + 0 = 0.

It implies that

lim
n→∞

xnyn = pq.
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Multiple Rule
Example

If limn→∞
n+1
n = 1 and λ = 5 then

lim
n→∞

λ

(
n + 1

n

)
= 5× 1 = 5.
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Multiple Rule
Proof

Note that the Multiple Rule is a just a special case of the Prodcut
Rule in which the sequence {yn} is a constant sequence.
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Quotient Rule
Example

If limn→∞ xn = limn→∞
n+1
n = 1 and

limn→∞ yn = limn→∞
(2n+1)
(3n−1) =

2
3 , then

lim
n→∞

xn
yn

=
1
2
3

=
3

2
.

To prove the Quotient Rule, we need to use the following lemma.
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Quotient Rule
Lemma 1

If limn→∞ xn = p and p > 0, then there is a number n0 such that
xn > 1

2p, for all n ≥ n0.
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Quotient Rule
Lemma 1 ⇒ Proof

Since limn→∞ xn = p, by the definition of convergence:

|xn − p| < ϵ, for all n ≥ n0.

Since any positive value can be taken as ϵ, we take ϵ = 1
2p, then:

|xn − p| < 1

2
p, for all n ≥ n0

−1

2
p < xn − p <

1

2
p, for all n ≥ n0

1

2
p < xn <

3

2
p, for all n ≥ n0.

So the left-hand inequality gives

xn >
1

2
p, for all n ≥ n0, as required.
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Quotient Rule
Proof

We assume that q > 0; the proof for the case q < 0 is similar.

Once again the idea is to write the required expression in terms of
xn − p and yn − q:

xn
yn

− p

q
=

xnq − ynp

ynq
=

q(xn − p)− p(yn − q)

ynq
.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 108/172



Quotient Rule
Proof ⇒ Cont...

q(xn − p)− p(yn − q) is certainly a null sequence, but the
denominator is rather awkward.

Some of the terms yn may take value 0, in which case the
expression is undefined.

However, by Lemma 1, we know that for some n0 we have

yn >
1

2
q, for all n ≥ n0.
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Quotient Rule
Proof ⇒ Cont...

Thus for all n ≥ n0:∣∣∣∣xnyn − p

q

∣∣∣∣ =
|q(xn − p)− p(yn − q)|

ynq

≤ |q(xn − p)− p(yn − q)|
1
2q

2

≤ |q| × |(xn − p)|+ |p| × |(yn − q)|
1
2q

2

Since this last expression defines a null sequence, it follows by

Squeeze Rule that

{
xn
yn

− p

q

}
is null.
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Applying Combination Rules

So far we tested the convergence of a given sequence {xn}
when we know the value of p in advance.

But usually, we are not given the value of p.

We are only given a sequence {xn} and asked to decide
whether or not it coverges and, if it does find its limt.

Combination Rules can be used to deal with such cases.
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Example

Show that each of the following sequences {xn} is convergent, and
find its limits:

(a) xn =
(2n + 1)(n + 2)

3n2 + 3n

(b) xn =
2n2 + 10n

n! + 3n3

(c) xn =
n3 + 2n2 + 3

2n3 + 1

(d) xn =
n! + (−1)n

2n + 3n!
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Example
Solution

(a) In this case we divide both the numerator and denominator by
n2 to give

xn =
(2n + 1)(n + 2)

3n2 + 3n

=

(
2 + 1

n

) (
1 + 2

n

)
3 + 3

n

Since { 1
n} is a basic null sequence, we find by the

Combination Rules that

lim
n→∞

xn = lim
n→∞

(
2 + 1

n

) (
1 + 2

n

)
3 + 3

n

lim
n→∞

xn =
(2 + 0)(1 + 0)

3 + 0
=

2

3
.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 113/172



Example
Solution ⇒ Cont....

Figure: Sequence diagram for xn = (2n+1)(n+2)
3n2+3n
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Example
Solution ⇒ Cont...

(b) This time we divide both the numerator and denominator by
n! to give

xn =
2n2 + 10n

n! + 3n3

=
2n2

n! + 10n

n!

1 + 3n3

n!

Since {n2

n! }, {
10n

n! } and {n3

n! } are all basic null sequences, we
find by Combination Rules that

lim
n→∞

=
0 + 0

1 + 0
= 0.
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Example
Solution ⇒ Cont...

(c) In this case we divide both the numerator and denominator by
n3 to give

xn =
n3 + 2n2 + 3

2n3 + 1

=
1 + 2

n + 3
n3

2 + 1
n3

Since { 1
n} and { 1

n3
} are basic null sequences, we find by the

Combination Rules that

lim
n→∞

xn = lim
n→∞

1 + 2
n + 3

n3

2 + 1
n3

=
1 + 0 + 0

2 + 0
=

1

2
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Example
Solution ⇒ Cont....

Figure: Sequence diagram for xn = n3+2n2+3
2n3+1
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Example
Solution ⇒ Cont...

(d) This time we divide both the numerator and denominator by
n! to give

xn =
n! + (−1)n

2n + 3n!

=
1 + (−1)n

n!
2n

n! + 3

Since { (−1)n

n! } and {2n

n! } are all basic null sequences, we find
by Combination Rules that

lim
n→∞

xn = lim
n→∞

1 + (−1)n

n!
2n

n! + 3

=
1 + 0

0 + 3
=

1

3
.
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General version of Squeeze Rule

If

1 xn ≤ yn ≤ zn, for n = 1, 2, · · · ,

2 limn→∞ xn = limn→∞ zn = p,

then limn→∞ yn = p.
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General version of Squeeze Rule
Proof

By the combination Rules

lim
n→∞

(zn − xn) = p − p = 0,

so that {zn − xn} is a null sequence. Also, by condition 1

0 ≤ yn − xn ≤ zn − xn, for n = 1, 2, · · ·

and so {yn − xn} is null, by Squeeze Rule for null sequences.
Now we write yn in the form

yn = (yn − xn) + xn.

Hence by the Combination Rules

lim
n→∞

yn = lim
n→∞

(yn − xn) + lim
n→∞

xn

= 0 + p = p.
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Limit Inequality Rule

If limn→∞ xn = p and limn→∞ yn = q, and also

xn ≤ yn, for all n = 1, 2, · · ·

then p ≤ q.
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Limit Inequality Rule
Proof

Suppose that xn → p and yn → q, where xn ≤ yn for n = 1, 2, · · · ,
but that it is not true that p ≤ q. Then p > q and so, by the
Combination Rules

lim
n→∞

(xn − yn) = p − q > 0.

Hence, by Lemma 1, there is an n0 such that

xn − yn >
1

2
(p − q), for all n ≥ n0. (9)

However, we assumed that xn − yn ≤ 0, for n = 1, 2, · · · , so
statement (9) is a contradiction.

Hence it is true that p ≤ q.
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Corollary 1

If limn→∞ xn = p and limn→∞ xn = q, then p = q.
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Corollary 1
Proof

Applying Limit Inequality Rule with xn = yn, we deduce that p ≤ q
and q ≤ p.

Hence p = q.
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Theorem 1

If limn→∞ xn = p, then limn→∞ |xn| = |p|.
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Theorem 1
Proof

Using the reverse form of the Triangle Inequality, we obtain

||xn| − |p|| ≤ |xn − p| , for n = 1, 2, · · · .

Since {xn − p} is null, we deduce from the Squeeze Rule for null
sequences that {|xn| − |p|} is null, as required.
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Types of divergent sequences

A sequence is divergent if it is not convergent.

We now investigate the behavior of sequences which do not
convergent.

Each of the below sequences is divergent but, as you can see,
they behave differently.
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Types of divergent sequences
Cont...

Figure: Sequence diagram of {4(1− xn)xn} where x1 = 0.3.
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Types of divergent sequences
Cont...

Figure: Sequence diagram of {(−1)n}
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Types of divergent sequences
Cont...

Figure: Sequence diagram of {2n}.
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Types of divergent sequences
Cont...

Figure: Sequence diagram of {n(−1)n}.
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Criteria for divergence

In here our intention is to obtain criteria for divergence, which
avoid having to argue directly from the definition.

We obtain two criteria by establishing certain properties,
which are necesarily possessed by a convergent sequence; if a
sequence does not have these properties, then it must be
divergent.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 132/172



Criteria for divergence
Cont...

One such property possessed by a convergent sequence is that
it must be bounded.

The idea of subsequences which we will discuss later can also
be used for establishing certain properties for convergent
sequences.

First, we will talk about boundedness.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 133/172



Theorem 2
Boundedness Theorem

If {xn} is convergent, then {xn} is bounded.
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Theorem 2
Proof

We know that xn → p, for some real number p. Thus {xn − p} is a
null sequnce, and so there is a number n0 such that

|xn − p| < ϵ, for all n ≥ n0.

By taking ϵ = 1 in the defintion of a null sequence, we have:

|xn − p| < 1, for all n ≥ n0.

For simplicity in the rest of the proof, we shall now assume that
our initial choice of n0 is a positive integer. Now

|xn| = |xn − p + p|
≤ |xn − p|+ |p|, by the Triangle Inquality.
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Theorem 2
Proof ⇒ Cont...

It follows that

|xn| ≤ 1 + |p|, for all n ≥ n0.

This is the type of inequality needed to prove that {xn} is
bounded, but it does not include the terms x1, x2, · · · , xn0 .

To complete the proof, we let M be the maximum of the numbers
|x1|, |x2|, · · · , |an0 |, 1 + |p|.

It follows that

|xn| ≤ M, for n = 1, 2, · · · ,

as required.
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Corollary 2

If {xn} is unbounded, then {xn} is divergent.
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Example 1

(a) The sequences {2n} and {n2} are both unbounded, since, for
each number M, we can find terms of these sequences whose
absolute values are greater than M. So they are both
divergent.

(b) The sequence {(−1)n} is bounded, because

|(−1)n| ≤ 1, for n = 1, 2, · · · .

However it is not necessarily convergent.
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Example 2

Classify the following sequences as convergent or divergent, and as
bounded or unbounded:

(a) {
√
n}

(b)

{
n2 + n

n2 + 1

}
(c)

{
(−1)nn2

}
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Example 2
Solution

(a) {
√
n} is unbounded, and hence divergent by Corollary 2.

Figure: Sequence diagram of {
√
n}.
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Example 2
Solution ⇒ Cont...

(b) {n2+n
n2+1

} is convergent with limit 1, and hence bounded, by
Theorem 2. Infact

n2 + n

n2 + 1
=

1 + 1
n

1 + 1
n2

≤ 1 +
1

n
≤ 2, for n = 1, 2, · · ·

Figure: Sequence diagram of { n2+n
n2+1}.
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Example 2
Solution ⇒ Cont...

(c)
{
(−1)nn2

}
is unbounded, and hence divergent, by Corollary 2.

Figure: Sequence diagram of
{
(−1)nn2

}
.
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Definition
Sequences which tend to infinity

The sequence {xn} tends to infinity if; for each positive number M,
there is a number n0 such that

xn > M, for all n > n0.

In this case, we write

xn → ∞ as n → ∞.
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Definition
Sequences which tend to infinity ⇒ Cont...

Figure: The sequence diagram of n2.
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Remark

If a sequence tends to infinity, then it is unbounded and hence
divergent, by Corollary 2.

If a sequence tends to infinity, then this remains true if we
add, delete or alter a finite number of terms.
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Reciprocal Rule

There is a version of the Reciprocal Rules for sequences which
tends to infinity.

This unables us to use our knowledge of null sequences to
identify sequences which tend to infinity.
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Theorem 3
Reciprocal Rule

(a) If the sequence {xn} satisfies both of the following conditions:

1 {xn} is eventually positive,

2 { 1
xn
} is a null sequence,

then xn → ∞.

(b) If xn → ∞, then 1
xn

→ 0.
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Example

Use the Reciprocal Rule to prove that the following sequences tend
to infinity:

(a)

{
n5

3

}
(b) {n! + 2n}

(c) {n!− 10n}
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Example
Solution

(a) Each term of the sequence {n5

3 } is positive and 1
n5/3

= 3
n5
.

Now, { 1
n5
} is a basic null sequence and so 3

n5
is null, by the

Multiple Rule. Hence {n5

3 } tends to infinity, by the Reciprocal
Rule.

(b) Each term of the sequence {n! + 2n} is positive and

lim
n→∞

1

n! + 2n
= lim

n→∞

1
n!

1 + 2n

n!

=
0

1 + 0
= 0,

by the Combination Rules. Hence {n! + 2n} tends to infinity,
by the Reciprocal Rule.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 149/172



Example
Solution ⇒ Cont...

(c) First note that

n!− 10n = n!

(
1− 10n

n!

)
, for n = 1, 2, · · ·

Since {10n

n! } is a basic null sequence, we know that 10n

n! is
eventually less than 1, and so n!− 10n is eventually positive.
Also

lim
n→∞

1

n!− 10n
= lim

n→∞

1
n!

1− 10n

n!

=
0

1− 0
= 0,

by the Combination Rules.

Hence {n!− 10n} tends to infinity, by the Reciprocal Rule.
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Combination Rules and Squeeze Rule

There are also versions of the Combination Rules and Squeeze Rule
for sequences which tend to infinity. We state these without proof.
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Combination Rules

If {xn} tends to infinity and {yn} tends to infinity, then:

Sum Rule {xn + yn} tends to infinity;

Multiple Rule {λxn} tends infinity, for λ > 0;

Product Rule {xnyn} tends to infinity.
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Example

For each of the following sequences {xn}, prove that xn → ∞.

(a)

{
2n

n

}
(b)

{
2n

n + 5n100
}
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Example
Solution

(a) Each term of {2n

n } is positive, and { n
2n } is a basic null

sequence. Hence 2n

n → ∞ by the Reciprocal Rule.

(b) Each term of {n100} is positive, and { 1
n100

} is a basic null
sequence. Hence n100 → ∞ by the Reciprocal Rule. By
Multiple Rule 5n100 → ∞. From part (a) we know that
2n

n → ∞. Hence by Sum Rule we have 2n

n + 5n100 → ∞.
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Squeeze Rule

If {yn} tends to infinity, and

xn ≥ yn, for n = 1, 2, · · · ,

then {xn} tends to infinity.
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Example

Show that the sequence
{
2n

n + 5n100
}
tends to infinity.
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Example
Solution

We know that 2n

n → ∞, by part (a) of the above example, and that

2n

n
+ 5n100 ≥ 2n

n
, for n = 1, 2, · · ·

Hence
2n

n
+ 5n100 → ∞, by the Squeeze Rule.
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Definition

The sequence {xn} tends to minus infinity if

−xn → ∞ as n → ∞.

In this case, we write

xn → −∞ as n → ∞.
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Example

The sequence {−n2} and {10n − n!} both tend to minus
infinity, because {n2} and {n!− 10n} tend to infinity.

Sequences which tend to minus infinity are unbounded, and
hence divergent.
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Subsequences

Consider the bounded divergent sequence {(−1)n}.

This sequence splits naturally into two:

1 the even terms x2, x4, · · · , x2k , · · · , each of which equals 1;

2 the odd terms x1, x3, · · · , x2k−1, · · · , each of which equals -1;

Both of these are sequence in thier own right, and we call
them the even subsequence {x2k} and the odd
subsequence {x2k−1}.
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Subsequences
Cont...

Figure: The sequence diagram of (−1)n.
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Subsequences
Cont...

In general, given a sequence {xn} we may consider many different
subsequences, such as

{x3k}, comprising the terms x3, x6, x9, · · · ;

{x4k+1}, comprising the terms x5, x9, x13, · · · ;

{x2k!}, comprising the terms x2, x4, x12, · · · .
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Definition
Subsequences

The sequence {xnk} is a subsequence of the sequence {xn} if
{nk} is a strictly increasing sequence of positive integers; that is, if

n1 < n2 < n3 < · · ·
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Example

Let xn = n2, for n = 1, 2, · · · . Write down the first five terms of
each of the subsequences {xnk}, where:

(a) nk = 2k;

(b) nk = 4k − 1.
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Example
Solution

(a) x2 = 4, x4 = 16, x6 = 36, x8 = 64, x10 = 100;

(b) x3 = 9, x7 = 49, x11 = 121, x15 = 225, x19 = 361.
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Inheritance property of subsequences

For any subsequence {xnk} of {xn}:

1 If xn → p as n → ∞, then xnk → p as k → ∞;

2 If xn → ∞ as n → ∞, then xnk → ∞ as k → ∞.
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First Subsequence Rule

The sequence {xn} is divergent if it has two convergent
subsequences with different limits.
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Example

The sequence {(−1)n} has two convergent subsequences
which have different limits.

The even subsequence converges to 1 and the odd
subsequence converges to -1.

So, the sequence {(−1)n} is divergent, by the First
Subsequence Rule.
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Second Subsequence Rule

The sequence {xn} is divergent if it has a subsequence which tends
to infinity or a subsequence which tends to minus infinity.
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Example

The sequence {n(−1)n} has a subsequence (the even
subsequence) which tends to infinity.

So, {n(−1)n} is divergent by the Second Subsequence Rule.
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Theorem 4

If the odd and even subsequences of {xn} both tend to the same
limit p, then

lim
n→∞

xn = p.
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Thank you !
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