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Chapter 2
Section 2.1

Axioms
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What is an axiom?

An axiom is a statement that is assumed to be true without
any proof.

Eg: Let x and y be real numbers. Then x + y and xy are also
real numbers.

Axioms are the principal building blocks of proving statements.

They serve as the starting point of other mathematical
statements.

These statements, which are derived from axioms, are called
theorems.
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What is a theorem?

A theorem, by definition, is a statement proven based on
axioms, other theorems, and some set of logical connectives.

Theorems are often proven through rigorous mathematical
and logical reasoning, and the process towards the proof will,
of course, involve one or more axioms and other statements
which are already accepted to be true.

Theorems are more often challenged than axioms, because
they are subject to more interpretations, and various
derivation methods.
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What is a methematical proof?

A proof is a deductive argument for a mathematical
statement.

In the argument, other previously established statements, such
as theorems, can be used.

A proof must demonstrate that a statement is always true.

An unproven statement that is believed true is known as a
conjecture.
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Different type of numbers

Natural (N) 1, 2, 3, 4, 5, 6, 7, ..., n

Positive integers 1, 2, 3, 4, 5, ..., n

Negative integers -1, -2, -3, -4, -5, ..., -n

Integers (Z) -n, ..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ..., n

Rational (Q) A number that can be expressed as p/q
where p and q are integers and q is not zero

Irrational (Q) A number that cannot be expressed as p/q
where p and q are integers and q is not zero

Real (R) A value that represents a quantity along
a continuous line
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Real numbers (R)

The real numbers include all of the measuring numbers.

The set of real numbers includes all integers, all rational and
the all irrational numbers.

Every rational number is also a real number.

It is not the case, however, that every real number is rational.
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Diagram of number system
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Axioms for real numbers

Let R be the set of real numbers with two binary operations:
addition x + y and multiplication x · y or just xy .

In a written expression involving both additions and
multiplications, multiplications take precedence over addition.

Furthermore, R obeys the following sets of axioms.
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Axioms for real numbers
Field axioms

The field axioms describe the algebraic properties of real numbers.

A1: Closure property. For every x , y ∈ R ⇒ x + y ∈ R

A2: Associative property. For every x , y , z ∈ R

(x + y) + z = x + (y + z)

A3: Identity element. For every x ∈ R we have 0 ∈ R such that
x + 0 = 0 + x = x

A4: Inverse element. For every x ∈ R we have −x ∈ R such that
x + (−x) = (−x) + x = 0

A5: Commutative property. For every x , y ∈ R

x + y = y + x
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Axioms for real numbers
Field axioms⇒Cont...

M1: Closure property. For every x , y ∈ R ⇒ xy ∈ R

M2: Associative property. For every x , y , z ∈ R

(xy)z = x(yz)

M3: Identity element. For every x ∈ R we have 1 ∈ R such that
x · 1 = 1 · x = x

M4: Inverse element. For every x ∈ R, x ̸= 0, ∃x ′ ∈ R such that
xx ′ = x ′x = 1

M5: Commutative property. For every x , y ∈ R

xy = yx

D: Distributive property. For every x , y , z ∈ R

x(y + z) = xy + xz
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Axioms for real numbers
Fields

A field is a set together with two operations, usually called
addition and multiplication, and denoted by + and ·,
respectively, such that the above axioms hold.

Therefore the collection (R,+, ·) is a field.
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Consequences of the algebric axioms

We can define subtraction in terms of addition and aditive
inverse by

a− b = a+ (−b).

Similarly if b ̸= 0

a÷ b =
a

b
= ab−1.
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Proposition 2.1

The additive and multiplicative identities are unique.
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Proposition 2.1
Proof

Suppose that 0 and 0′ are two additive identities on R, clearly
0, 0′ ∈ R.
If 0 ∈ R and 0′ ∈ R is an identity we can write

0 + 0′ = 0′ + 0 = 0 (1)

Similarly 0′ ∈ R and 0 ∈ R is an identity

0′ + 0 = 0 + 0′ = 0′ (2)

From (1) and (2)

0 = 0 + 0′ = 0′ + 0 = 0′

0 = 0′ ⇒ Hence the proof.

The argument for the multiplicative identity is similar.
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Proposition 2.2

For any given x ∈ R there is a unique additive inverse (−x)
and for any non zero x ∈ R there is a unique multiplicative
inverse (x−1).
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Proposition 2.2
Proof

Let y1, y2 be two additive inverses of x ∈ R

y1 + x = x + y1 = 0 = y2 + x = x + y2. (3)

y1 = y1 + 0

= y1 + (x + y2)

= (y1 + x) + y2

= 0 + y2 (by(3))

= y2 ⇒ Hence the proof
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Proposition 2.2
Proof⇒Cont...

Let y1, y2 be two multiplicative inverses of x ∈ R, x ̸= 0.

y1x = xy1 = 1 = y2x = xy2 (4)

On the other hand we have

y1 = y1 · 1 = y1(xy2)

= (y1x)y2

= 1 · y2 by(4)

= y2 ⇒ Hence the proof
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Theorem 2.1
Cancellation lows

If a, b, c ∈ R and a+ c = b + c then a = b.

If a, b ∈ R and c ̸= 0 and ac = bc then a = b.
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Remark

Let x , y ∈ R be non-zero elements and x−1, y−1 ∈ R. Then
consider

(x−1y−1)(yx) = x−1(y−1y)x

= x−1 · 1 · x
= x−1x

= 1

(x−1y−1) is the inverse of (yx).

⇒ (yx)−1 = x−1y−1

For more convenient, we can write

(xy)−1 = y−1x−1.
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Proposition 2.3

Let x ∈ R. Then x · 0 = 0.
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Proposition 2.3
Proof

0 = 0 + 0

x · 0 = x · (0 + 0)

= x · 0 + x · 0

By adding −(x · 0) to both side we get

−(x · 0) + (x · 0) = [−(x · 0) + (x · 0)] + (x · 0)
0 = 0 + (x · 0)

x · 0 = 0
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Proposition 2.4

Let x , y ∈ R. Then xy = 0 ⇔ x = 0 or y = 0 or equivalently
xy ̸= 0 ⇔ x ̸= 0 and y ̸= 0.
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Proposition 2.4
Proof

If either x = 0 or y = 0 then xy = 0.

Conversely suppose that xy = 0 and x ̸= 0.

Then x has x−1 in R such that

0 = x−1 · 0
= x−1 · (xy)
= (x−1x)y

= 1 · y
= y
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Proposition 2.4
Proof⇒Cont...

Conversely suppose that xy = 0 and y ̸= 0.

Then y has y−1 in R such that

0 = 0 · y−1

= (xy) · y−1

= x(yy−1)

= x · 1
= x

which completes the proof.
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Proposition 2.5

Let x , y , z ∈ R. Then, if y ̸= 0 and z ̸= 0

1
x

y
=

xz

yz

2
x + y

z
=

x

z
+

y

z
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Proposition 2.5
Proof

xz

yz
= (xz)(yz)−1

= xzż−1y−1

= x(zz−1)y−1

= xy−1

=
x

y
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Proposition 2.5
Proof⇒Cont...

x + y

z
= (x + y)z−1

= z−1(x + y)

= z−1x + z−1y

= xz−1 + yz−1

=
x

z
+

y

z
.
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Theorem 2.2

If a, b, c , d ∈ R and c ̸= 0, d ̸= 0.

1 −(−a) = a

2 (c−1)−1 = c

3 (−1)a = −a

4 a(−b) = −(ab) = (−a)b

5 (−a) + (−b) = −(a+ b)

6

(a
c

)(
b

a

)
=

(ab)

(cd)

7
a

c
+

b

d
=

ad + bc

cd

Poof is an exercise.
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Chapter 2
Section 2.2

Order Axioms
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What are order axioms?

Apart from the algebraic properties mentioned earlier, the real
numbers satisfy another important property called order
axioms.

Given any x , y ∈ R we can say whether x = y , x < y or x > y .

If x > 0 we say that x is positive.

Less than/greater than relation between two numbers is
known as oder relation on R.
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Order axiom

There exists a subset P of R called the set positive real numbers
which satisfies the following properties.

(i) 0 ̸∈ P.

(ii) For any x ̸= 0, x ∈ R, either x ∈ P or −x ∈ P but not both.

(iii) If x , y ∈ P then x + y ∈ P and xy ∈ P.
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Proposition 2.6

1 is a positive real number.
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Proposition 2.6
Proof

1 ̸= 0.

Therefore −1 ∈ P or 1 ∈ P.

If (-1) in P, then (−1)(−1) ∈ P ⇒ 1 ∈ P.

But −1 and 1 both should not be in P.

Therefore −1 ̸∈ P.

It implies that 1 ∈ P.
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Order properties of R
Trichotomy property

The law of Trichotomy states that every real number is either
positive, negative, or zero.

That is if x , y ∈ R then exactly one of the following holds:

(i) x < y or
(ii) x = y or
(iii) x > y .
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Order properties of R
Transitive property

If x , y , z ∈ R then

x < y and y < z ⇒ x < z .
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Order properties of R
Archimedean property

If x ∈ R then there exists a positive integer n such that n > x .
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Order properties of R
Density property

The density property tells us that we can always find another
real number that lies between any two real numbers.

For example, between 7.61 and 7.62, there is 7.611, 7.612,
7.613 and so forth.

That is if a, b ∈ R and a < b, then there exists x ∈ R such
that a < x < b.
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Remark

1 a < b ∧ c > 0 ⇒ ac < bc

2 a < b ∧ c < 0 ⇒ ac > bc

3 0 < 1 ⇒ −1 < 0

4 a > 0 ⇒ 1

a
> 0

5 0 < a < b ⇒ 0 <
1

b
<

1

a

6 a, b ∈ R, p > 0 ⇒ a < b ⇔ ap < bp.
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Absolute value of a number
Definition

The absolute value of any x ∈ R is denoted by |x | and is
defined by

|x | =
{

x if x ≥ 0
−x if x < 0.

The absolute value of a number may be thought of as its
distance from zero.
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Absolute value of a number
Remark 1

For any x ∈ R, |x | is always non-negative and we have:

1 |x | ≥ x

2 |x | ≥ −x

Further, |x | = | − x | and

|xn| = |x |n.
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Absolute value of a number
Remark 2

For any x , y ∈ R, the following properties hold.

1 |x | = | − x | ≥ 0. The equality holds if and only if x = 0.

2 |x |2 = x2 = (−x)2.

3 |x · y | = |x | · |y |.
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Triangle inequality
A property for any triangle

The sum of the lengths of any two sides of a triangle is
greater than the length of the third side.

In the figure, the following inequalities hold.

1 a+ b > c

2 a+ c > b

3 b + c > a
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Triangle inequality
Motivative example 1

Check whether it is possible to have a triangle with the given side
lengths 4, 5, 7.
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Triangle inequality
Motivative example 1⇒Solution

We should add any two sides and see if it is greater than the other
side.

The sum of 4 and 5 is 9 and 9 is greater than 7.

The sum of 4 and 7 is 11 and 11 is greater than 5.

The sum of 5 and 7 is 12 and 12 is greater than 4.

These sides 4, 5, 7 satisfy the above property.

Therefore, it is possible to have a triangle with sides 4, 5, 7.
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Triangle inequality
Motivative example 2

Check whether the given side lengths form a triangle 2, 5, 9.
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Triangle inequality
Motivative example 2⇒Solution

Check whether the sides satisfy the above property.

The sum of 2 and 5 is 7 and 7 is less than 9.

This set of side lengths does not satisfy the above property.

Therefore, these lengths do not form a triangle.
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Triangle inequality
Theorem 2.3

The triangle inequality states that for any triangle, the
sum of the lengths of any two sides must be greater
than the length of the remaining side.

The triangle inequality requires that the absolute value satisfy
for any real numbers x and y :

|x + y | ≤ |x |+ |y |.
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Triangle inequality
Theorem 2.3 ⇒ Proof

We must show that for any x , y ∈ R, |x + y | ≤ |x |+ |y |.

|x + y | = (x + y) or − (x + y)

If |x + y | = x + y

≤ |x |+ |y | (5)

If |x + y | = −(x + y)

= −x − y

= (−x) + (−y)

≤ |x |+ |y | (6)

From (5) and (6) we have

|x + y | ≤ |x |+ |y |.
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Triangle inequality
Triangle inequality for n terms

For any a1, a2, ..., an ∈ R

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

i.e
∣∣∣ n∑
i=1

ai

∣∣∣ ≤
n∑

i=1

|ai |
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Triangle inequality
Example 1

Show that

|a| ≤ 1 ⇒ |3 + a3| ≤ 4.
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Triangle inequality
Example 1 ⇒ Solution

|3 + a3| ≤ |3|+ |a3|
= 3 + |a|3

≤ 3 + 13 (since |a| ≤ 1)

= 4.
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Triangle inequality
Example 2

Use the triangle inequality to prove that:

|a| ≤ 1

2
⇒ |a+ 1| ≤ 3

2
.
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Triangle inequality
Example 2 ⇒ Solution

|a+ 1| ≤ |a|+ |1|

= |a|+ 1 (since |a| ≤ 1

2
)

≤ 1

2
+ 1

=
3

2
.
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The reverse form of triangle inequality

The reverse triangle inequality which states that for any real
numbers x and y :

|x − y | ≥
∣∣∣|x | − |y |

∣∣∣.
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The reverse form of triangle inequality
Proof

∣∣∣|x | − |y |
∣∣∣ = |x | − |y | or − (|x | − |y |)

= |x | − |y | or |y | − |x |
|x | = |x − y + y |
|x | ≤ |x − y |+ |y |

|x | − |y | ≤ |x − y | (7)

|y | = |y − x + x |
|y | ≤ |y − x |+ |x |

|y | − |x | ≤ |y − x |
|y | − |x | ≤ |x − y | (8)

From (7) and (8) we have

|x − y | ≥
∣∣∣|x | − |y |

∣∣∣.
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The reverse form of triangle inequality
Example 1

Show that

|b| < 1 ⇒ |3− b| > 2.
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The reverse form of triangle inequality
Example 1 ⇒ Solution

The reverse form of the triangle inequality then gives

|3− b| ≥
∣∣∣|3| − |b|

∣∣∣
=

∣∣∣3− |b|
∣∣∣

≥ 3− |b|.

Now |b| < 1, so that −|b| > −1. Thus

3− |b| > 3− 1

= 2.
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The reverse form of triangle inequality
Example 2

Use the reverse form of the triangle inequality to prove that:

|b| < 1

2
⇒ |b3 − 1| > 7

8
.
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The reverse form of triangle inequality
Example 2 ⇒ Solution

|b3 − 1| ≥
∣∣∣|b3| − |1|

∣∣∣
=

∣∣∣|b3| − 1
∣∣∣

≥ −(|b3| − 1)

= −(|b|3 − 1)

= 1− |b|3

Now |b| < 1
2 , so that |b|3 < 1

8 and −|b|3 > −1
8 . Thus

|b3 − 1| > 1− 1

8
=

7

8
.
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Inequalities involving n

In Analysis we often need to prove inequalities involving an
integer n.

It is common convention in mathematics that the symbol n is
used to denote an integer (frequently a natural number).
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Inequalities involving n
Example

Prove that

2n2 ≥ (n + 1)2, for n ≥ 3.
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Inequalities involving n
Example ⇒ Solution

n 1 2 3 4

2n2 2 8 18 32

(n + 1)2 4 9 16 25

Rearranging this inequality into an equivalent form, we obtain

2n2 ≥ (n + 1)2 ⇔ 2n2 − (n + 1)2 ≥ 0

⇔ n2 − 2n − 1 ≥ 0

⇔ (n − 1)2 − 2 ≥ 0

⇔ (n − 1)2 ≥ 2.

This final inequality is clearly true for n ≥ 3, and so the original
inequality 2n2 ≥ (n + 1)2 is true for n ≥ 3.
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Chapter 2
Section 2.3

Induction Principle
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Why do we need mathematical induction?

Mathematical induction is a method of mathematical proof
typically used to establish a given statement for all natural
numbers.

We shall discuss more inequalities after studying the induction
principle.

Let us start with a discussion of bounded sets in R.
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Upper bound and lower bound
Definition

Let S be a nonempty set of real numbers, that is ∅ ̸= S ⊂ R. If
there is m ∈ R such that m ≤ x for every x ∈ S , we say m is lower
bound for the set S . Similarly, a real number M is said to be an
upper bound for S if x ≤ M, for every x ∈ S .
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Upper bound and lower bound
Example

Determine an upper bound and a lower bound of the set
S = {2, 5, 8, 13}.
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Upper bound and lower bound
Example ⇒ Solution

The given set is S = {2, 5, 8, 13}.

The number 13 is an upper bound of S .

The number 2 is a lower bound of S .
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Upper bound and lower bound
Remark 1

The set R of all real numbers has neither an upper bound or a
lower bound.

The reason is that for any given real M, there is a number in
the set R, greater than or equal to M; for example, M + 1.

Thus no number M can be an upper bound for R.

Similar reasoning shows that R has no lower bound either.
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Upper bound and lower bound
Remark 2

The set Z of integers also has neither an upper bound nor a lower
bound.
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Upper bound and lower bound
Remark 3

If a set has an upper bound, it will have several upper bounds.

For example, if M is an upper bound for S , then so is the
number M + 1 or the number M + 100 and so on.

The same is true with lower bounds.
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Upper bound and lower bound
Remark 3 ⇒ Example

Consider the set S = {2, 5, 8, 13}.

The number 13 is an upper bound. Any number ≥ 13 is also
an upper bound. The least upper bound is 13.

The number 2 is a lower bound. Any number ≤2 is also a
lower bound. The greatest lower bound is 2.
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Upper bound and lower bound
Remark 4

A set may have a lower bound but not any upper bound and
vice-versa.

For example, the set N has zero as a lower bound but has no
upper bound.
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Bounded sets
Definition

A nonempty set S ⊂ R, is said to be bounded above if there is a
real M such that x ≤ M, for every x ∈ S . It is said to be bounded
below if there is a real number m such that m ≤ x , for every
x ∈ S . If a set is bounded above and below, it is called a bounded
set. The empty set ∅ is always taken as a bounded set.
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Bounded sets
Remark 1

A finite set is always bounded.

For example the set S = {2, 5, 8, 13} is bounded.

The number 13 is an upper bound. So, the set is bounded
above.

The number 2 is a lower bound. So, the set is bounded below.

Since it is both bounded above and bounded below, we call it
as a bounded set.
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Bounded sets
Example 1

Show that the set {x2 + 1 : x ∈ R} is bounded below.
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Bounded sets
Example 1 ⇒ Solution

For any real x , x2 ≥ 0 so x2 + 1 ≥ 1.

It implies that 1 is a lower bound for the set.

Therefore the set is bounded below.
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Bounded sets
Example 2

Show that the set { 1

x2 + 1
: x ∈ R} is bounded.
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Bounded sets
Example 2 ⇒ Solution

For any real x , x2 ≥ 0 so x2 + 1 ≥ 1.

Taking reciprocals, we have
1

x2 + 1
≤ 1.

Since x2 + 1 > 0, we have, for any real x ,

0 <
1

x2 + 1
≤ 1.

In other words, 0 and 1 are the lower and the upper bounds for the

set { 1

x2 + 1
: x ∈ R}.

Therefore it is bounded.
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Bounded sets
Example 3

Show that the set of numbers of the form

1 +
1

2
+

1

4
+

1

8
+ ...+

1

2n
,

where n ≥ 1 is an integer, form a bounded set.
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Bounded sets
Example 3 ⇒ Solution

If we let

Sn = 1 +
1

2
+

1

4
+

1

8
+ ...+

1

2n
, then

1

2
Sn =

1

2
+

1

4
+

1

8
+

1

16
...+

1

2n+1
,

so

Sn −
1

2
Sn = (1 +

1

2
+

1

4
+

1

8
+ ...+

1

2n
)− (

1

2
+

1

4
+

1

8
+

1

16
...+

1

2n+1
)

hence

1

2
Sn = 1− 1

2n+1

Sn = 2

(
1− 1

2n+1

)
≤ 2.

Therefore M = 2 is an upper bound on the given set, while all the
numbers are positive, so 0 is a lower bound.
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Bounded sets
Remark 2

If a set is bounded below, its lower bound may or may not be
in that set.

Thus, if S = {x : x ≥ 0} is the set of non-negative numbers,
0 is a lower bound to the set and it belongs to the set.

But -1 is also a lower bound to the set not belonging to the
set.

Similarly, an upper bound of a set may or may not be in the
set S .
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Bounded sets
Remark 3

We say m is the least element of a set S if it is a lower
bound of S and also is in the set S .

Note that if a set has a least element, it must be unique.

The greatest element of a set is analogously defined.

It is also unique, when it exists.
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Bounded sets
Remark 4

A set may be bounded above, without having the greatest element
or may be bounded below, without having the least element.
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Bounded sets
Remark 4 ⇒ Example

The set (0, 1) = {x ∈ R : 0 < x < 1} is bounded but has no
greatest or the least element in the set itself.

0 is a lower bound but it is not in the set where as 1 is an
upper bound which is not in the set.

Hence (0, 1) is a bounded set that does not have greatest and
least element.
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Bounded sets
Well-ordering axiom

The set N = {1, 2, ..., n, ...} of natural numbers is bounded
below and infact has the least element, namely 1. Every
non-empty subset of N also has this property.

That is every non-empty subset of N has the least element. It
is called well-ordering axiom of natural numbers.
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Infimum of a set
Definition

Let S ⊂ R be non-empty. If there exists m ∈ R, such that

1 m ≤ x for every x ∈ S , and

2 if m1 is any lower bound of S , then m1 ≤ m,

then m is called infimum of S and we write m = inf S . It is also
called greatest lower bound of S and we write,
m = inf S = g.l.b. S .
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Supremum of a set
Definition

Let S ⊂ R be non-empty. If there exists M ∈ R, such that

1 x ≤ M for every x ∈ S , and

2 if M1 is any upper bound of S , then M ≤ M1,

then M is called supremum of S and we write M = sup S . It is
also called least upper bound of S and we write,
M = sup S = l.u.b. S .
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Infimum and supremum
Remark 1

The infimum of a set is unique when it exists.

Suppose both m and m1 are infima of the set S .

Then both are lower bounds of S .

Since m is the greatest of the lower bounds, m1 ≤ m.

By the same argument, m ≤ m1.

In other words, m = m1.

Like the infimum of a set, the supremum of a set, when it exists, is
unique.
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Infimum and supremum
Remark 2

The words lower bound, least element, infimum all have
precise and distinct meanings.

Analogous statements are also true regarding the supremum
of a set.
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Infimum and supremum
Remark 3

If a set has the least element, it is also its infimum but not
conversely.

If a set has greatest element, it is its supremum but not
conversely.
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Infimum and supremum
Example 1

Consider the set S = (−1, 5) and determine followings:

1 Upper bounds

2 Greatest element

3 Supremum
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Infimum and supremum
Example 1 ⇒ Solution

1 The set S = (−1, 5) is bounded above by 100, 35, 6, 5.55, 5.
In fact 5 is its least upper bound.

2 5 is an upper bound of S which is not in the set S . Hence
S = (−1, 5) does not have a greatest element.

3 The set S = (−1, 5) has a supremum and it is equal to 5.
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Infimum and supremum
Example 2

Consider the set S = (−1, 5] and determine followings:

1 Upper bounds

2 Greatest element

3 Supremum
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Infimum and supremum
Example 2 ⇒ Solution

1 The set S = (−1, 5] is bounded above by 100, 35, 6, 5.55, 5.
In fact 5 is its least upper bound.

2 5 is an upper bound of S which is in the set S . Hence
S = (−1, 5] does have a greatest element and it is equal to 5.

3 The set S = (−1, 5] has a supremum and it is equal to 5.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 96/124



Infimum and supremum
Example 3

Find the infimum and supremum of following sets:

1 If a < b, then S = [a, b]

2 If a < b, then S = [a, b)

3 If a < b, then S = (a, b]

4 If a < b, then S = (a, b)
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Infimum and supremum
Example 3 ⇒ Solution

1 inf S=a and sup S=b

2 inf S=a and sup S=b

3 inf S=a and sup S=b

4 inf S=a and sup S=b
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Infimum and supremum
Example 4

Find the infimum and supremum of following sets:

1 S = {1, 2, 3, 4, 5, 6}

2 S = {q ∈ Q : e < q < p}

3 S = {x ∈ R|0 < x ≤ 1}

4 S = {1/n|n ∈ N}
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Infimum and supremum
Example 4 ⇒ Solution

1 inf S=1 and sup S=6

2 inf S=e and sup S=p

3 inf S=0 and sup S=1

4 inf S=0 and sup S=1
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Infimum and supremum
Remark 4

If a set S is not bounded below, clearly it will not have the
infimum.

We then say inf S does not exists.

Similarly, if it is not bounded above, sup S does not exists.

But even if a set S is bounded below, it is not immediately
clear that inf S exists, or if it is bounded above, that sup S
exists.

But below axiom assumes thier existence.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 101/124



Infimum and supremum
Completeness axiom

Let S be a non-empty subset of R.

If S is bounded below, then inf S exists in R.

If S is bounded above, then sup S exists in R.
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Theorem 2.4

A real number m is the infimum of a non-empty set S if and only if
both the conditions below are satisfied.

1 m ≤ x , for every x ∈ S

2 for any ϵ > 0, there is x ∈ S , such that m ≤ x < m + ϵ.
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Theorem 2.4
Proof

Suppose m=inf S .

Then certainly m ≤ x for all x ∈ S .

So (1) is satisfied.

Let any ϵ > 0 be given.

If m + ϵ ≤ x for every x ∈ S , then m + ϵ will be a lower bound for
S , so m cannot be the greatest lower bound for S .

Hence there is at least some x ∈ S such that x < m + ϵ.

This shows that (2) is also satisfied when m=inf S .

In other words, condition (1) and (2) are necessary.
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Theorem 2.4
Proof ⇒ Cont...

Now, let us show that they are also sufficient.

Suppose there is a real m which satisfies both (1) and (2) above.

Then by (1), m is a lower bound of S .

Let m1 > m be arbitary and let ϵ = m1 −m.

Then ϵ > 0 and by (2), for m1 = m + ϵ, there is x ∈ S such that
m ≤ x < m + ϵ = m1.

This shows that m1 cannot be a lower bound of S , that is, no
number > m can be a lower bound for S , so that m=inf S .

This shows that the given conditions are also suffucient.
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Theorem 2.5

A real number M is the supremun of non-empty set S if and only if
both the conditions below are satisfied.

1 x ≤ M, for every x ∈ S

2 for any ϵ > 0, there is x ∈ S , such that M − ϵ < x ≤ M.
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Example 1

Let S = (0,∞). Then prove that inf S=0.
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Example 1
Solution

Since (0,∞) consists of all real numbers greater than 0, 0 is a
lower bound of (0,∞).

Let ϵ > 0.

Then
ϵ

2
∈ (0,∞) and

ϵ

2
< 0 + ϵ.

Hence 0 satisifes the alternate characterization of infimum given in
above Theorem 2.4, so inf (0,∞) = 0
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Example 2

Let S = [1, 2]. Then prove that sup S=2 and inf S=1.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 109/124



Example 2
Solution

let ϵ > 0 be given.

S = {x |1 ≤ x ≤ 2}.

Clearly x ≤ 2 ∀x ∈ S ⇒ 2 is an upper bound.

We consider 2− ϵ and the inequality.

2− ϵ < x0 ⇒ Now we define x0 as x0 = 2− ϵ

2
.

Then clearly 2− ϵ

2
= x0 ∈ S .

Therefore 2 is the supremum.

In the same way you can show that inf S=1.

Department of Mathematics University of Ruhuna — Calculus (Real Analysis I)(MAT122β) 110/124



Principle of mathematical induction
Theorem 2.6

Suppose P(n) is a statement about a positive integer n and
suppose that

1 P(1) is true and

2 if P(n) is true, so is P(n + 1).

Then the statement P(n) is true for all n ∈ N.
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Principle of mathematical induction
Theorem 2.5 ⇒ Proof

Let S denote the set of natural numbers for which given statement
P(n) is false.

Thus, S = {n ∈ N : P(n) is false}.

So S is a subset of N.

The theorem will be proved if we show that S has no elements in
it, that is, S = ∅.
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Principle of mathematical induction
Theorem 2.5 ⇒ Proof

Suppose that S ̸= ∅, so it is non-empty subset of N and so by
well-ordering axiom, it has least element, say k.

Now k ̸= 1, since by Hypothesis (1), the statement P(1) is true.

Hence k > 1 and hence k − 1 is a positive integer.

Now P(k − 1) is true, for otherwise, k − 1 would be in S and k
will not be the least element of S .
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Principle of mathematical induction
Theorem 2.5 ⇒ Proof ⇒ Cont...

But if P(k − 1) is true, so is P(k) = P((k − 1) + 1), by (2) of the
Induction Hypothesis.

But then k /∈ S , contradicting the fact that k ∈ S .

This contradiction shows that S must be empty; that is, the
statement P(n) must be true for all n ∈ N.
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Principle of mathematical induction
Example 1

For each integer n ≥ 1

1 4n + 5 is divisible by 3,

2 4n + 15n − 1 is divisible by 9.
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Principle of mathematical induction
Example 1 ⇒ Solution

The statement holds when n = 1 because then
4n + 5 = 41 + 5 = 9.

Suppose the statement is true for n, say 4n + 5 = 3k for some
integer k .

Then

4n+1 + 5 = 4n · 4 + (20− 15)

= 4(4n + 5)− 15

= 12k − 15

= 3(4k − 5),

a multiple of 3.

This shows that the result is also holds for n + 1.

Hence, by the induction theorem, the statement holds for all n ≥ 1.
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Principle of mathematical induction
Example 1 ⇒ Solution ⇒ Cont...

Again, it is clear that the result holds when n = 1.

Suppose it holds for n.

To see it also holds for n + 1, note that

4n+1 + 15(n + 1)− 1 = (3 + 1) · 4n + 15n + 15− 1

= (4n + 15n − 1) + 3(4n + 5).

By induction hypothesis, the first term is divisible by 9 while by
part (i), (4n + 5) is divisible by 3.

So 3(4n + 5) is divisible by 9.

Hence, the left side is also so.
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Principle of mathematical induction
Example 2

Use induction to establish the formula

1 + 2 + ...+ n =
n · (n + 1)

2
for all n ∈ N.
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Principle of mathematical induction
Example 2 ⇒ Solution

To show that the formula holds when n = 1, we have to check that

1 =
1 · (1 + 1)

2
⇔ 2 = 1 + 1,

and this is certainly true.

In particular, the given formula does hold when n = 1.
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Principle of mathematical induction
Example 2 ⇒ Solution ⇒ Cont...

Suppose now that the formula holds for some n ∈ N, namely
suppose that

1 + 2 + ...+ n =
n · (n + 1)

2
.

Adding n + 1 to both sides and simplifying, we then get

1 + 2 + ...+ (n + 1) =
n · (n + 1)

2
+ (n + 1)

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2
.

This shows that the formula holds for n + 1 as well, so it actually
holds for all n ∈ N.
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Principle of mathematical induction
Example 3

Prove that

2n ≥ n2 for n ≥ 4.
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Principle of mathematical induction
Example 3 ⇒ Solution

Let P(n) be the statement P(n) : 2n ≥ n2.

P(4) ⇒ 24 = 16

42 = 16

It implies that 2n ≥ n2 holds for n = 4.

Suppose the statement is true for n.

2n ≥ n2

Multiplying above by 2 we get

2n+1 ≥ 2n2
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Principle of mathematical induction
Example 3 ⇒ Solution ⇒ Cont...

Hence it is enough to show that 2n2 ≥ (n + 1)2.

2n2 ≥ (n + 1)2 ⇔ 2n2 ≥ n2 + 2n + 1

⇔ n2 − 2n − 1 ≥ 0

⇔ (n − 1)2 − 2 ≥ 0

This is true for n ≥ 4.

Therefore 2n+1 ≥ (n + 1)2.

So the statement is true for (n + 1).

It follows from mathematical induction that the statement P(n) is
true for ∀n ∈ N, n ≥ 4.
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Thank you !
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