Mathematics for Biology MAT1142

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Department of Mathematics University of Ruhuna Mathematics for Biology

Subject	Mathematics for Biology
Course unit	MAT1142
Number of lecture hours	30hrs
Credit value	2 (Not counted for the Degree)
Method of assessment	End of semester examination

Reference and course materials

- Maths. A self Study Guide by Jenny Olive. Second Edition. (510 OLI).
- 2. Pure Mathematics I by L Bostock and S. Chandler.
- 3. Basic concepts of elementary mathematics by Peterson, John M. (510PET).
- A biologist's basic mathematics by Causton, David R. (510.24574CAU).
- 5. www.math.ruh.ac.lk/~pubudu

Basic Algebra

What is Mathematics?

- When considering the mathematics, many people focus on computation (how to add, subtract, multiply, and divide whole numbers, fractions, decimals, and percentages).
- Mathematics involves more than computation.
- Mathematics is a study of patterns and relationships; a science and a way of thinking; an art, characterized by order and internal consistency; a language, using carefully defined terms and symbols; and a tool.

Mathematics in our day to day life

- We use mathematics for such simple tasks as telling the time from a clock or counting our change after making a purchase.
- We also use maths for more difficult tasks, such as, making up a household budget.
- Cooking, driving, gardening, sewing and many other common activities often require mathematical calculations involving measurement.
- Mathematics is also part of many games, hobbies and sports, as well as science, industry and business.

The development of numbers

- The numbers were used by people in the Stone Age for counting things like property and enemies.
- Zero was used as a number representing the state of not having something.
- Negatives came along much later to allow debt collectors to work out how much they could extract from those suffering from an overload of zeroes.

Ancient Egyptian numbers

The ancient Egyptians were possibly the first civilisation to practice the scientific arts.

Different symbols used to represent numbers

- ▶ 1 is shown by a single stroke.
- ▶ 10 is shown by a drawing of a hobble for cattle.
- ▶ 100 is represented by a coil of rope.
- ▶ 1,000 is a drawing of a lotus plant.
- ▶ 10,000 is represented by a finger.
- ▶ 100,000 by a tadpole or frog.
- 1,000,000 is the figure of a god with arms raised above his head.

Reading and writing of large numbers

- The conventions for reading and writing numbers is quite simple.
- The higher number is always written in front of the lower number.

Use of numbers in today

- A number is a mathematical object used in counting and measuring.
- Different types of numbers are used in different cases.
- ► Numbers can be classified into sets, called number systems.

Different type of numbers

- ▶ Natural numbers (ℕ)
- ► Integers (Z)
- Rational numbers (Q)
- Irrational numbers (Q^c)
- ► Real numbers (ℝ)
- ► Complex numbers (ℂ)

Natural numbers (\mathbb{N})

- The natural numbers had their origins in the words used to count things (Eg: Five oranges, two boys etc).
- Zero was not even considered a number for the Ancient Greeks.
- There is no universal agreement about whether to include zero in the set of natural numbers.
- Some define the natural numbers to be {1, 2, 3, ...}, while others define it as {0, 1, 2, 3, ...}.

- The integers are formed by the natural numbers (including 0) (0, 1, 2, 3, ...) together with the negatives of the non-zero natural numbers (-1, -2, -3, ...).
- Positive integers are all the whole numbers greater than zero: 1, 2, 3, 4, 5,
- Negative integers are all the opposites of these whole numbers: -1, -2, -3, -4, -5,
- ▶ We do not consider zero to be a positive or negative number.

Department of Mathematics University of Ruhuna Mathematics for Biology

Rational numbers (\mathbb{Q})

 A rational number is a number that can be expressed as a fraction with an integer numerator and a non-zero integer number denominator.

$$\mathbb{Q} = \{r = rac{p}{q} | p, q \in \mathbb{Z}; q
eq 0\}$$

Number	As a Fraction	Rational?
5	5/1	Yes
1.75	7/4	Yes
.001	1/1000	Yes
0.111	1/9	Yes
$\sqrt{2}$?	NO

Irrational numbers (\mathbb{Q}^c)

- Some numbers cannot be written as a ratio of two integers.
- They are called irrational numbers.
- It is called irrational because it cannot be written as a ratio (or fraction).

Irrational numbers (\mathbb{Q}^c) Example 1

- π is an irrational number
 - ▶ $\pi = 3.1415926535897932384626433832795...$
 - You cannot write down a simple fraction that equals π .
 - So, it is an irrational number.
 - The popular approximation of $\frac{22}{7} = 3.1428571428571...$ is close but not accurate.

Irrational numbers (\mathbb{Q}^c) Example 2

$\sqrt{2}$ is an irrational number

- ► $\sqrt{2}$ =1.4142135623730950...(etc).
- It cannot be written as a ratio of two numbers.
- So, it is an irrational number.

- Every integer can be written as a fraction with denominator 1.
- So, the set of all rational numbers includes the integers.
- ▶ Eg: -7 can be written -7/1.
- ▶ Eg: 3 can be written 3/1.

Real numbers (\mathbb{R})

- ► The real numbers include all of the measuring numbers.
- The set of real numbers includes all integers, all rational and the all irrational numbers.
- Every rational number is also a real number.
- It is not the case, however, that every real number is rational.

Diagram of number system

Classify following numbers according to number type.

(i) 0.45
(ii) 10
(iii)
$$5/3$$
(iv) $1\frac{2}{3}$
(v) $-9/3$

- It can be written as a fraction: $45/100 \Rightarrow 9/20$.
- This fraction does not reduce to a whole number.
- So it is not an integer or a natural.
- Since it is a ratio of two integers, it is **rational number**.
- Every rational number is a real number.
- Therefore it is also a **real number**.

- This is a counting number.
- So it is a **natural number**.
- Every natural number is an integer.
- So it is an **integer**.
- ► This can be written as 10/1. Therefore it is **rational number**.
- Every rational number is a real number.
- So it is also a real number.

Solutions (iii) 5/3

- This is a fraction.
- So it is a rational number.
- It is also a real number.

Solutions (iv) $1\frac{2}{3}$

- This can also be written as 5/3.
- So it is **rational** and **real**.

- ► This is a fraction, but notice that it reduces to -3.
- So this may also count as an integer.
- ► Therefore -9/3 is an integer, a rational and a real.

Why do we need another number type?

Equation 1	Equation 2
$x^2 - 1 = 0$	$x^2 + 1 = 0$
$x^{2} = 1$	$x^2 = -1$

- Equation 1 has solutions because the number 1 has two square roots, 1 and -1.
- Equation 2 has no solutions because -1 does not have a square root.

Why do we need another number type? $_{\mbox{Cont...}}$

- In other words, there is no number such that if we multiply it by itself we get -1.
- If Equation 2 is to be given solutions, then we must create a square root of -1.

Complex numbers (\mathbb{C})

- ► A complex number is one of the form *a* + *bi*, where a and b are real numbers.
- ▶ a is called the real part of the complex number, and b is called the imaginary part.
- *i* is a symbol with the property that $i^2 = -1$.

$$x^{2} + 1 = 0$$

$$x^{2} = -1$$

$$x^{2} = i^{2}$$

$$x = \pm i$$

Every real number is a complex number

- The real number 5 is equal to the complex number 5 + 0i.
- ► The real number -9.12 is equal to the complex number -9.12 + 0i.

Diagram of whole number system

Cojugate of a complex number

- A complex number z is a number of the form z = x + yi.
- Its conjugate \overline{z} is a number of the form $\overline{z} = x yi$.
- ► The complex number *z* and its conjugate \overline{z} have the same real part.
- The sign of the imaginary part of the conjugate complex number is reversed.

Cojugate of a complex number Examples

Find the conjugates of the following complex numbers.

(i) 4 + 3i(iv) -5i(ii) 5 - 2i(v) 12(iii) 4i + 1(vi) $2 + \sqrt{6}$

Arithmatic operations on integers

If both a and b are integers (i.e $a, b \in \mathbb{Z}$), then

- 1. $a + b \in \mathbb{Z}$.
- 2. $a-b \in \mathbb{Z}$.
- 3. $a \times b \in \mathbb{Z}$.

Arithmatic operations on real numbers

If both a and b are real numbers(i.e $a, b \in \mathbb{R}$), then 1. $a + b \in \mathbb{R}$.

- 2. $a-b \in \mathbb{R}$.
- 3. $a \times b \in \mathbb{R}$.
- 4. $p/q \in \mathbb{R}$ when $q \neq 0$.

Arithmatic operations on complex numbers

If both z_1 and z_2 are complex numbers(i.e $z_1, z_2 \in \mathbb{C}$), then 1. $z_1 + z_2 \in \mathbb{C}$.

- 2. $z_1 z_2 \in \mathbb{C}$.
- 3. $z_1 \times z_2 \in \mathbb{C}$.

4. $z_1/z_2 \in \mathbb{C}$.

Arithmatic operations on complex numbers Examples

Let
$$z_1 = 4 + 3i$$
 and $z_2 = 3 - 2i$. Find followings,

(i) $\overline{z_1}$. (ii) $\overline{z_2}$. (iii) $\overline{z_2}$. (iii) $z_1 + z_2$. (v) $z_1 - z_2$. (v) $z_1 . z_2$. (vi) z_1 / z_2 .

- Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal.
- That is, a + bi = c + di if and only if a = c, and b = d.

Remark 2 Examples

Find the values of x and y.

(i)
$$2+3i = x + yi$$

(iv) $x + yi = 2$
(ii) $-2+6i = 2x + 3yi$
(v) $x + yi = (3+i)(2-3i)$
(iii) $9+8i = -3+4i+3xi+2y$
(vi) $\frac{x+yi}{2+i} = 5-i$

Summary of different type of numbers

Natural	(0), 1, 2, 3, 4, 5, 6, 7,, n
Integers	-n,, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,, n
Positive integers	1, 2, 3, 4, 5,, n
Negative integers	-1, -2, -3, -4, -5,, -n
Rational	a/b where a and b are integers and b is not zero
Real	The limit of a convergent sequence of rational
	numbers
Complex	a + bi where a and b are real numbers and i
	is the square root of -1

Thank you

Department of Mathematics University of Ruhuna Mathematics for Biology