Mathematics for Biology MAT1142

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Department of Mathematics University of Ruhuna - Mathematics for Biology

Chapter 7

Partial Differentiation and Total Differentiation

Section 7.1

Partial Differentiation

Suppose a boy throws a ball vertically upward with a speed of $20ms^{-1}$ and the height of the ball, in meters, after *t* seconds is approximately given by,

$$H(t)=20t-10t^2.$$

- Here, time *t* is a variable.
- That is the only variable within the given expression.
- So, the height *H* is a function of one variable.

- Then, $\frac{dH}{dt}$ represents the rate of change of H or velocity v.
- It implies that the rate of change of a function with one variable was shown to be measured by its **derivative**.
- But many applications require functions with more than one variable.
- Can we find derivative of a function with more than one variable?
- To answer that we need the concept of **partial derivatives**.

The ideal gas law can be expressed as,

PV = kT.

- Where *P* is the pressure, *V* is the volume, *T* is the absolute temperature of the gas, and *k* is a constant.
- We can rearranging above equation as,

$$P = kT/V.$$

■ It shows that *P* is a function of two variables *T* and *V*.

- If one of the variables, say T, is kept fixed and V changes, then the derivative of P with respect to V measures the rate of change of pressure with respect to volume.

The process of differentiating a function with respect to one variable, while treating the other variables, as a constant is called **partial differentiation**.

If $P = \frac{kT}{V}$, find the partial derivatives of P,

(a) with respect to T.

(b) with respect to V.

(a) If we treated V as a constant, then

$$P = \frac{kT}{V}$$
$$\frac{\partial P}{\partial T} = \frac{k}{V}.$$

(b) If we treated T as a constant, then

$$P = \frac{kT}{V} = kTV^{-2}$$
$$\frac{\partial P}{\partial V} = -kTV^{-2}$$
$$= \frac{-kT}{V^2}.$$

If
$$z = f(x, y) = 2x^2y + 3xy^2$$
, find the partial derivatives of z,

(a) with respect to x.

(b) with respect to y.

- (a) The rate of change of z with respect to x may be found out when y is constant.
 - To do this, z is differentiated with respect to x, treating y as a constant.

$$z = 2x^2y + 3xy^2$$
$$\frac{\partial z}{\partial x} = 4xy + 3y^2$$

• The quantity $4xy + 3y^2$ is called the partial derivative of z with respect to x and is denoted by $\frac{\partial z}{\partial x}$.

- (b) The rate of change of z with respect to y may be found out when x is constant.
 - To do this, z is differentiated with respect to y, treating x as a constant.

$$z = 2x^2y + 3xy^2$$
$$\frac{\partial z}{\partial y} = 2x^2 + 6xy$$

The quantity 2x² + 6xy is called the partial derivative of z with respect to y and is denoted by
 ^{∂z}/_{∂y}.

(i)
$$f(x, y) = 3x + 5y$$

(ii) $z = x^3 + y^2$
(iii) $g(x, y) = 2x^2y^2 + y^2x^4$
(iv) $w = x^2y + y^2x + 8$
(v) $z = x^3y + e^x$

(vi)
$$h(x, y) = \frac{x - y}{x + y}$$

(vii) $u = \cos(x^2 y)$
(viii) $L = 2x \sin(x^2 y)$

Example 4 Past paper 2012

Suppose in a flat metal plate the temperature at a point (x, y) varies according to position. Let the temperature at a point (x, y) be given by

$$T(x,y) = 50/(1+x^2+y^2);$$

where T is measured in Celsius and x and y in meters. What is the rate of change of temperature with respect to distance at the point (3,2)

(i) in the *x*-direction?(ii) in the *y*-direction ?

Example 4 Solution

(i)

$$T(x,y) = \frac{50}{1+x^2+y^2}$$

= $50(1+x^2+y^2)^{-1}$
 $\frac{\partial T}{\partial x} = 50(-1)(1+x^2+y^2)^{-2}(2x)$
 $\frac{\partial T}{\partial x} = \frac{-100x}{(1+x^2+y^2)^2}$
 $\left(\frac{\partial T}{\partial x}\right)_{(3,2)} = \frac{-100(3)}{(1+3^2+2^2)^2}$
= $-1.5306 cm^{-1}$

Example 4 Solution

(ii)

$$T(x,y) = \frac{50}{1+x^2+y^2}$$

= $50(1+x^2+y^2)^{-1}$
 $\frac{\partial T}{\partial y} = 50(-1)(1+x^2+y^2)^{-2}(2y)$
 $\frac{\partial T}{\partial y} = \frac{-100y}{(1+x^2+y^2)^2}$
 $\left(\frac{\partial T}{\partial y}\right)_{(3,2)} = \frac{-100(2)}{(1+3^2+2^2)^2}$
= $-1.0204cm^{-1}$

(i)
$$f(x, y) = 7x + 6y$$

(ii) $z = 2x^4 + 3y^5$
(iii) $f(x, y) = 5x^5y^2 + y^3x$
(iv) $f(x, y) = y^2x + 5x$
(v) $f(x, y) = x^3y^4 + 2e^y$

(vi)
$$w = \frac{x}{y}$$

(vii) $z = \sin(xy^2)$
(viii) $f(x, y) = 5x \sin(xy^2)$

Partial derivatives with more than two variables

- Suppose z is a function of independent variables, $x_1, x_2, ..., x_n$.
- Then, z can be differentiated with respect to x₁ when other variables x₂, ..., x_n are kept constant.
- The partial derivative of z with respect to x_1 is denoted as $\frac{\partial z}{\partial x_1}$.
- Similarly other partial derivatives are,

$$\frac{\partial z}{\partial x_2}, \frac{\partial z}{\partial x_3}, \frac{\partial z}{\partial x_4}, \dots, \frac{\partial z}{\partial x_n}.$$

Suppose that we have the function

$$w = f(x, y, z) = x\sin(yz) + ye^{x} + 5y^{4}$$

Then find, $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$, and $\frac{\partial w}{\partial z}$.

Section 7.2

Total Differentiation

If we consider z as a function of two variables such as z = f(P, T), then the total differential dz can be written as,

$$\mathrm{d}z = \left(\frac{\partial z}{\partial P}\right)_T \mathrm{d}P + \left(\frac{\partial z}{\partial T}\right)_P \mathrm{d}T.$$

If we consider z as a function of three variables such as z = f(P, V, T), then the total differential dz can be written as,

$$\mathrm{d}z = \left(\frac{\partial z}{\partial P}\right)_{V,T} \mathrm{d}P + \left(\frac{\partial z}{\partial V}\right)_{P,T} \mathrm{d}V + \left(\frac{\partial z}{\partial T}\right)_{P,V} \mathrm{d}T.$$

Where $\left(\frac{\partial z}{\partial P}\right)_{V,T}$ means that the function z is differentiated with respect to the variable P, keeping the other variables V, T as constants.

If we consider z as a function of more variables such as z = f(a, b, c, d, ...), then the total differential dz can be written as,

$$\mathrm{d}z = \left(\frac{\partial z}{\partial a}\right)_{b,c,d,\dots} \mathrm{d}a + \left(\frac{\partial z}{\partial b}\right)_{a,c,d,\dots} \mathrm{d}b + \left(\frac{\partial z}{\partial c}\right)_{a,b,d,\dots} \mathrm{d}c + \dots$$

Where $\left(\frac{\partial z}{\partial a}\right)_{b,c,d,\ldots}$ means that the function z is differentiated with respect to the variable a, keeping the other variables b, c, d, \ldots as constants.

Find the total differential of (i) $u = 3p^2 + 4T^3$. (ii) $v = 3p^2 + 4T^2 + P^2T^4$.

Example 2 Past paper 2012

If $p = \ln(e^{v} + e^{q})$, find the total differential of p.

Cobb-Douglas production function is given by

$$Y = f(K, L) = AK^{\alpha}L^{1-\alpha},$$

where A and α are constants. Find the total differential of Y.

A function $f(x_1, x_2, ..., x_m)$ is said to be homogeneous of degree n with the variables $x_1, x_2, ..., x_m$ if

$$f(\lambda x_1, \lambda x_2, ..., \lambda x_m) = \lambda^n f(x_1, x_2, ..., x_m)$$

Find out whether following equations are homogeneous or not? If homogeneous, what is the degree of it?

(i)
$$f(x, y, z) = x^2 + y^2 + z^2$$
.
(ii) $g(x, y) = x + y$.
(iii) $h(x, y) = x^2 + 3y^2 - 6xy$.

The ideal gas equation is given by,

$$f(P,V,T)=\frac{PV}{T}.$$

State whether this function is homogeneous or not? If it is homogeneous, what is the degree of it?

State whether $f(x, y) = x^2 + 3y^2 - 6xy + 5$ is homogeneous or not?

If $f(x_1, x_2, ..., x_m)$ is a homogeneous function of degree *n* with the variables $x_1, x_2, ..., x_m$, then we can prove that,

$$x_1\frac{\partial f}{\partial x_1} + x_2\frac{\partial f}{\partial x_2} + x_3\frac{\partial f}{\partial x_3} + \dots + x_m\frac{\partial f}{\partial x_m} = nf$$

This result is known as the **Euler's theorem** on homogeneous functions.

Past paper 2011

(a) The van der Walls equation is given in usual notation as

$$\left(P+\frac{a}{V^2}\right)(V-b)=RT;$$

where a and b are constants.

(i) Express P in terms of V, T, a, b and R.

(ii) Determine
$$\frac{\partial P}{\partial T}$$
 and $\frac{\partial P}{\partial V}$.

(iii) Write down expression for dp.

- (iv) Express dp when T = 300, V = 2, a = 5.5, b = 0.035 and R = 1.4.
- (v) If T and V could change from 2 and 0.01 respectively, what would be the value of dp?

(b) If
$$p = \ln(e^{3x} + e^{3y})$$
 show that $\frac{\partial p}{\partial x} + \frac{\partial p}{\partial y} = 3$.

(c) For reversible, adiabatic expansion of an ideal gas,

$$f(T, V) = TV^{\gamma-1}$$
 where $\gamma = \frac{C_P}{C_V}$.

Find whether this equation is homogeneous or not? If it is homogeneous, what is the degree of it?

Thank You