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Chapter 6
Section 6.1

Pre-Requisities for Differentiation
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Terms and polynomials

A term is an algebraic expression that is either a constant or
a product of a constant and one or more variables raised to
whole-number powers.

Examples of terms include: 8, 6x4, 5xy3.

A polynomial is a finite sum of one or more terms.

Examples of polynomials are: 6y4, x + 13, 7x2 − 12xy + 8y2.

Department of Mathematics University of Ruhuna — Mathematics for Biology 4/75



The degree of terms and the degree of polynomials

The degree of a term is the sum of the exponents of its
variables.

The degree of a nonzero constant is zero.

The degree of a polynomial is the highest degree of any of
its terms.
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The degree of terms and the degree of polynomials
Examples

(a) 3x5 − 5x3 − 7x + 13

This polynomial has four terms, including a fifth-degree term, a
third-degree term, a first-degree term, and a constant term. This is
a fifth-degree polynomial.

(b) 6x4 + 4x2 + x

This polynomial has three terms, including a fourth-degree term, a
second-degree term, and a first-degree term. There is no constant
term. This is a fourth-degree polynomial.
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General form of a univariate polynomial of degree n

The simplest polynomials have one variable.

A one-variable (univariate) polynomial of degree n has the
following form:

anx
n + an−1x

n−1 + ...+ a2x
2 + a1x

1 + a0x
0.
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General form of a univariate polynomial of degree n
Cont...

Where the a’s represent the coefficients and x represents the
variable.

Because x1 = x and x0 = 1 for all complex numbers x , the
above expression can be simplified to:

anx
n + an−1x

n−1 + ...+ a2x
2 + a1x + a0.
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How to calculate the slope of a line?

Let’s begin by considering the position versus time graph below.
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How to calculate the slope of a line?
Cont...

The line is sloping upwards to the right.

But mathematically, by how much does it slope upwards for
every 1 second along the horizontal (time) axis?

To answer this question we must use the slope equation.

Slope =
y2 − y1
x2 − x1

=
rise

run
.
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How to calculate the slope of a line?
Cont...

Pick two points on the line and determine their coordinates.

Determine the difference in y -coordinates of these two points
(rise).

Determine the difference in x-coordinates for these two points
(run).

Divide the difference in y -coordinates by the difference in
x-coordinates (rise/run).
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How to calculate the slope of a line?
Example

Find the slop of the line using following points.

(a) For points (5s, 50m) and (0s, 0m).

(b) For points (5s, 50m) and (2s, 20m).

(c) For points (4s, 40m) and (3s, 30m).
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How to calculate the slope of a curve?

To find slope of a curve, we have to consider tangents drawn
to the curve at different points.

Tangent means ”a straight line that touches a curve at a
point but does not intersect it at that point”.
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How to calculate the slope of a curve?
Cont...

Let y = f (x) is a function as shown in Figure.

The straight line AB has slope BC/CA.

As the point B moves along the curve toward A, the straight
line AB tends toward the tangent to the curve at A.

At the same time, the value of the slope BC/CA tends toward
the slope of the tangent to the curve at A.
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How to calculate the slope of a curve?
Cont...

BC

CA
=

f (x + δx)− f (x)

δx
dy

dx
= f ′(x) = lim

δx→0

δy

δx
= lim

δx→0

f (x + δx)− f (x)

δx

The limit,
dy

dx
or f ′(x), is called the derivative of the function f(x)

at the point A(x , y). Its value is the slope of the tangent to the
curve at the point A(x , y).
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Chapter 6
Section 6.2

Introduction to Differentiation
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Introduction

Differentiation is concerned with the rate of change of one
quantity with respect to another quantity.

When illustrating a function on a graph the rate of change is
represented by the slope of a tangent.

So, differentiation is the problem of finding the slope of a
tangent at a specific point on a graph.
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Definition
Derivative

The instantaneous rate of change of a function y = f (x) at a
point x = a is called the derivative of f (x) at x = a, denoted

by f ′(a) or
(
dy
dx

)
x=a

.
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Motivating example 1

Suppose we were to measure the position of a car, traveling in
a direct path (no turns), from its starting point.

Let us call this measurement, x .

If the car moves at a rate such that its distance from ”start”
increases steadily over time, its position will plot on a graph
as a linear function (straight line).
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Motivating example 1
Position of the car
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Motivating example 1
Cont...

The instantaneous rate of change of the car’s position with
respect to time is called the derivative of the car’s position
with respect to time.

The derivative of the car’s position with respect to time
represents the car’s velocity.
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Motivating example 1
Velocity of the car
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Motivating example 1
Cont...

The instantaneous rate of change of the function x(t) at a
point t = a is called the derivative of x(t) at t = a, denoted
by x ′(a) or

(
dx
dt

)
t=a

.

x ′(a) is the velocity of the car at t = a.
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Motivating example 2

A boy throws a ball vertically upward with a speed of 20ms−1 then
the height of the ball, in meters, after t seconds is approximately,

H(t) = 20t − 10t2.

Find the average speed of the ball during the following time
intervals.

(a) t = 0.5s to t = 1s,

(b) t = 0.5s to t = 0.75s,

(c) t = 0.5s to t = 0.6s,

(d) t = 0.5s to t = 0.502s,

(e) t = 0.5s to t = 0.501s,

(f) t = 0.5s to t = 0.5001s.
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Motivating example 2
Solution

The average speed is given by,

Average speed =
Travelled distance

Time taken
.

(a) The average speed from t = 0.5s to t = 1s is:

=
Travelled distance

Time taken

=
H(1)− H(0.5)

1− 0.5

=
[20× 1− 10× (1)2]− [20× 0.5− 10× (0.5)2]

1− 0.5

= 5ms−1
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Motivating example 2
Solution⇒Cont...

(b) The average speed from t = 0.5s to t = 0.75s is:

=
Travelled distance

Time taken

=
H(0.75)− H(0.5)

0.75− 0.5

=
[20× 0.75− 10× (0.75)2]− [20× 0.5− 10× (0.5)2]

0.75− 0.5

= 7.5ms−1
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Motivating example 2
Solution⇒Cont...

If we calculate average speeds for each of the above time
intervals, a good choice for the speed of the ball at t = 0.5 is
corresponding to the solution of part (f).

The next example gives the general solution to this problem.
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Motivating example 3

If, as in motivative example 2, the height of a ball at time t is
given by

H(t) = 20t − 10t2,

then find the following :

(a) the average speed of the ball over the time interval from t to
t + δt,

(b) the limit of this average as δt � 0.
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Motivating example 3
Solution⇒Cont...

(a) The height at time t + δt is H(t + δt) and the height at time
t is H(t). The difference in heights is H(t + δt)− H(t) and
the time interval is δt.

H(t + δt)− H(t) =
[
20(t + δt)− 10(t + δt)2

]
−

[
20t − 10t2

]
= 20δt − 20tδt − 10(δt)2

= δt [20− 20t − 10δt]
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Motivating example 3
Solution⇒Cont...

The required average speed of the ball from t to t + δt is:

=
Travelled distance

Time taken

=
H(t + δt)− H(t)

δt

=
δt [20− 20t − 10δt]

δt
= 20− 20t − 10δt.
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Motivating example 3
Solution⇒Cont...

(b) As δt gets smaller, i.e. δt � 0, the last term becomes
negligible.

The instantaneous speed at time t is 20− 20t.

That is the speed of the ball at time t.

Department of Mathematics University of Ruhuna — Mathematics for Biology 31/75



Remark

The speed v(t) is obtained from the height H(t) as,

v(t) = H ′(t) =
dH

dt
= lim

δt→0

[
H(t + δt)− H(t)

δt

]
.
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Steps in differentiating a function using definition

1 Let y = f (x).

2 Then y + δy = f (x + δx).

3 y + δy − y = f (x + δx)− f (x) ⇒ δy = f (x + δx)− f (x).

4
δy

δx
=

f (x + δx)− f (x)

δx
.

5 lim
δx→0

δy

δx
= lim

δx→0

(
f (x + δx)− f (x)

δx

)
.

6
dy

dx
= lim

δx→0

(
f (x + δx)− f (x)

δx

)
.
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Rule 1 : The derivative of a constant

The derivative of a constant is zero. That is if y = c , where c is a

constant, then
dy

dx
= 0.
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Rule 1 : The derivative of a constant
Examples

Find the derivatives of the followings.

(i) y = 7.

(ii) y = 7a where a is a constant.

(iii) y =
5a

b6
where a, b are constants.

(iv) y = a3b + b5c + 65c5 where a, b, c are constants.

(v) y = log
√
5a3b7 where a and b are constants.
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Differentiating functions using definition
Examples

Using the basic definition, find the derivatives of the following
functions with respect to x .

(i) y = x .

(ii) y = x2.

(iii) y = x3.
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Differentiating functions using definition
Examples ⇒ Solution

(i)

y = x

y + δy = x + δx

y + δy − y = x + δx − x

δy = δx
δy

δx
=

δx

δx

lim
δx→0

δy

δx
= lim

δx→0
1

dy

dx
= 1
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Differentiating functions using definition
Examples ⇒ Solution

(ii)

y = x2

y + δy = (x + δx)2

y + δy − y = x2 + 2x δx + (δx)2 − x2

δy = 2x δx + (δx)2

δy

δx
=

2x δx + (δx)2

δx
= 2x + δx

lim
δx→0

δy

δx
= lim

δx→0
2x + lim

δx→0
δx

dy

dx
= 2x
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Differentiating functions using definition
Examples ⇒ Solution

(iii)

y = x3

y + δy = (x + δx)3

y + δy − y = x3 + 3x2 δx + 3x (δx)2 + (δx)3 − x3

δy = 3x2 δx + 3x(δx)2 + (δx)3

δy

δx
=

3x2 δx + 3x(δx)2 + (δx)3

δx
δy

δx
= 3x2 + 3x(δx) + (δx)2

lim
δx→0

δy

δx
= lim

δx→0
3x2 + lim

δx→0
3x(δx) + lim

δx→0
(δx)2

dy

dx
= 3x2
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Differentiating functions using definition
Examples⇒Generalization of results

Function y Derivative
dy

dx
Can arrange as

x 1 1x1−1

x2 2x 2x2−1

x3 3x2 3x3−1

x4 4x3 4x4−1

x5 5x4 5x5−1

. . .

. . .

. . .
xn nxn−1 nxn−1
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Rule 2: The general power rule

If the function is given by y = xn, where n is any positive or
negative integer, then:

dy

dx
= nxn−1.
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Rule 2: The general power rule
Examples

Find the derivatives of the followings.

(i) y = x7.
(ii) y = x50.
(iii) y = x−6.

(iv) y =
1

x7
.

(v) y =
1

t
.

(vi) y =
1

u−15
.
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Differentiating a constant times a function using definition
Examples

Using the basic definition, find the derivatives of the following
functions with respect to x .

(i) y = ax .

(ii) y = ax2.

(iii) y = ax3.
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Differentiating a constant times a function using definition
Examples ⇒ Solution

(i)

y = ax

y + δy = a(x + δx)

y + δy − y = ax + a δx − ax

δy = a δx
δy

δx
=

a δx

δx

lim
δx→0

δy

δx
= lim

δx→0
a

dy

dx
= a
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Differentiating a constant times a function using definition
Examples ⇒ Solution

(ii)

y = ax2

y + δy = a(x + δx)2

y + δy − y = ax2 + 2ax δx + a(δx)2 − ax2

δy = 2ax δx + a(δx)2

δy

δx
=

2ax δx + a(δx)2

δx
= 2ax + a δx

lim
δx→0

δy

δx
= lim

δx→0
2ax + lim

δx→0
a δx

dy

dx
= 2ax
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Differentiating a constant times a function using definition
Examples ⇒ Solution

(iii)

y = ax3

y + δy = a(x + δx)3

y + δy − y = ax3 + 3ax2 δx + 3ax (δx)2 + a(δx)3 − ax3

δy = 3ax2 δx + 3ax(δx)2 + a(δx)3

δy

δx
=

3ax2 δx + 3ax(δx)2 + a(δx)3

δx
δy

δx
= 3ax2 + 3ax(δx) + a(δx)2

lim
δx→0

δy

δx
= lim

δx→0
3ax2 + lim

δx→0
3ax(δx) + lim

δx→0
a(δx)2

dy

dx
= 3ax2
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Differentiating a constant times a function using definition
Examples⇒Generalization of results

Function y Derivative dy/dx Can arrange as

ax a ax1−1

ax2 2ax 2ax2−1

ax3 3ax2 3ax3−1

ax4 4ax3 4ax4−1

ax5 5ax4 5ax5−1

. . .

. . .

. . .
axn naxn−1 naxn−1
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Rule 3: The derivative of a constant times a function

If the function is given by y = axn, where a is any real number and
n is any positive or negative integer, then:

dy

dx
= anxn−1.
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Rule 3: The derivative of a constant times a function
Examples

Find the derivatives of the followings.

(i) y = 5x6.

(ii) y = −1

4
x8.

(iii) y = 5u−8.

(iv) y =
4

t5
.

(v) y = −13

x7
.

(vi) y =
7x3

x−15
.
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More examples

Find the derivatives of the following functions.

(i) y =
√
x .

(ii) y = 7
1√
x
.

(iii) y = 5
√
u.

(iv) y =
√

p5.
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Rule 4: The derivative of a sum or a difference

If y = h(x) + g(x), then

dy

dx
=

dh

dx
+

dg

dx
.

If y = h(x)− g(x), then

dy

dx
=

dh

dx
− dg

dx
.
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Rule 4: The derivative of a sum or a difference
Proof

y = h(x) + g(x)

y + δy = h(x + δx) + g(x + δx)

y + δy − y = h(x + δx) + g(x + δx)− (h(x) + g(x))

δy = h(x + δx) + g(x + δx)− h(x)− g(x)

δy = h(x + δx)− h(x) + g(x + δx)− g(x)
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Rule 4: The derivative of a sum or a difference
Proof⇒Cont...

δy

δx
=

h(x + δx)− h(x) + g(x + δx)− g(x)

δx

δy

δx
=

h(x + δx)− h(x)

δx
+

g(x + δx)− g(x)

δx

lim
δx→0

δy

δx
= lim

δx→0

h(x + δx)− h(x)

δx
+ lim

δx→0

g(x + δx)− g(x)

δx

dy

dx
=

dh

dx
+

dg

dx
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Rule 4: The derivative of a sum or a difference
Examples

Find the derivatives of the following functions.

(i) y = 5x6 + 3x5.

(ii) y = −1

4
x7 + 5x .

(iii) y = 7x−5 + 3x5.

(iv) y =
2

x5
+

2

5
.

(v) y = − 9

x5
− 3x7.

(vi) y =
5x3

x−15
+ x

2
3 .
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Rule 5: The derivative of a polynomial function

Let y = f (x) be a polynomial function.

dy

dx
=

d

dx
f (x) = f ′(x).

f ′(x) is called the derivative of the polynomial f (x).
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Rule 5: The derivative of a polynomial function
The derivative of a univariate polynomial of degree n

y = f (x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x + a0

dy

dx
= f ′(x) = annx

n−1 + an−1(n − 1)x (n−1)−1 + ...+ a22x
2−1

+ a1x
1−1 + 0

dy

dx
= f ′(x) = annx

n−1 + an−1(n − 1)xn−2 + ...+ a22x + a1.
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Rule 5: The derivative of a polynomial function
Examples

Find the derivatives of the following functions. Suppose n is a
constant.

(i) y = 3x−7 + 5x4 + 7x + 5.

(ii) y = 8 +
3

x
− 7

x2
.

(iii) y =
1

4
x4 +

1

8
x +

1

7
.

(iv) y = 3t3 + 6t2 + 9t + 7.

(v) v = 3xn − nx6 + 7n.

(vi) h = 2u3 +
1

u2
+ 7u + 3.
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Rule 6: The derivatives of trigonometric functions

y
dy

dx
sin x cos x
cos x − sin x
tan x sec2 x
cot x − csc2 x
sec x sec x tan x
csc x − csc x cot x
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Rule 6: The derivatives of trigonometric functions
Examples

Find the derivatives of the following functions.

(i) y = 5x3 + sin x .
(ii) y = tan x+2 cos x+7x2+4.

(iii) y = cot x +
1

x7
+

1

cos x
.

(iv) y = 5 cos t +2t5 +4t +
1

t7
.

(v) v = 5x3 +
1

sin x
.

(vi) h =
cos x tan x + 5x2 csc x sin x .
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Rule 7: The derivative of exponential function

y = ex

y = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ ...

dy

dx
= 0 + 1 +

2x

2!
+

3x2

3!
+

4x3

4!
+

5x4

5!
+ ...

dy

dx
= 0 + 1 +

2x

1× 2
+

3x2

1× 2× 3
+

4x3

1× 2× 3× 4

+
5x4

1× 2× 3× 4× 5
+ ...

dy

dx
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ ...

dy

dx
= ex
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Rule 7: The derivative of exponential function
Examples

Find the derivatives of the following functions.

(i) y = 3ex + 7x .

(ii) y = tan x+sin x+4x5+7ex .

(iii) y =
ex

5
+

1

x3
.

(iv) y = 7et + t5 + 2(t + et).

(v) v = 4x3 +
1

e−x
.

(vi) h =
4

e−x
+

2

tan x
.
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Rule 8: The derivative of a product

The derivative of the product y = u(x)v(x), where u and v are
both functions of x is,

dy

dx
= u × dv

dx
+ v × du

dx
.
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Rule 8: The derivative of a product
Examples

Find the derivatives of the following functions.

(i) y = (x + 3)(x + 2).

(ii) y = x2 sin x .

(iii) y = sin x cos x .

(iv) y = ex(5x3 − 1).

(v) p = (x3 + 5x)(x5 − 7x).

(vi) h = sin2 x csc x tan x .

(vii) y = x3ex cos x .

(viii) y = (x + 3)(sin x)ex .
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Rule 9: The derivative of a quotient

The derivative of the quotient y = u(x)/v(x), where u and v are
both function of x is:

dy

dx
=

v × du

dx
− u × dv

dx
v2

.
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Rule 9: The derivative of a quotient
Examples

Find the derivatives of the following functions.

(i) y =
(x + 3)

(x + 5)
.

(ii) y =
(x3 − 1)

5x2
.

(iii) y =
x5 + 5x2 − 4

x2 − 1
.

(iv) y =
sin t + t

cos t
.

(v) p =
ex

cos x
.

(vi) h =
(x2 + 5)

5ex − 2 tan x
.
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Rule 10: The derivative of a function of function

If y is a function of u, i.e. y = f (u), and u is a function of x , i.e.
u = g(x) then the derivative of y with respect to x is:

dy

dx
=

dy

du
× du

dx
(The chain rule).
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Rule 10: The derivative of a function of function
Examples

Find the derivatives of the following functions.

(i) y = (x + 3)5.

(ii) y = (7x5 − 3x2 − 2x + 9)4.

(iii) y = (2x4 + 6)7.
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Short way for chain rule
Examples

Find the derivatives of the following functions.

(i) y = (x + 3)5.

(ii) y = (7x5 − 3x2 − 2x + 9)4.

(iii) y = (2x4 + 6)7.

(iv) y =
√
1 + x2.

(v) y = cos(x2).

(vi) y = sin(x2 + 3x + 5).

(vii) y = e3x .

(viii) y = ex
2
.

(ix) y = ex
3+2x+7.

(x) y =
1√

x2 + 1
.
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Motivating example 2 (Cont...)

The height H(t) in metres of a ball thrown vertically at
20ms−1, was given by,

H(t) = 20t − 10t2.

The velocity of the ball, v ms−1, after t seconds, was given
by,

v(t) =
dH

dt
= 20− 20t.

Department of Mathematics University of Ruhuna — Mathematics for Biology 69/75



Motivating example 2 (Cont...)

The rate of change of velocity with time, which is the
acceleration, is then given by a(t), where,

a(t) =
dv

dt
= −20ms−2.
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Motivating example 2 (Cont...)

The acceleration was derived from H(t) by two successive
differentiations.

The resulting function, which in this case is a(t), is called the
second derivative of H(t) with respect to t.

It can be written mathematically as,

a(t) =
dv

dt
=

d

dt

(
dH

dt

)
=

d2H

dt2
.
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The second derivative

The second derivative is the derivative of the derivative of a
function.

The derivative of the function f (x) may be denoted by f ′(x),
and its second derivative is denoted by f ′′(x).
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Higher derivatives

The third derivative is the derivative of the derivative of the
derivative of a function, which can be represented by f ′′′(x).

This is read as ”the third derivative of f (x)”.

This can continue as long as the resulting derivative is itself
differentiable, with the fourth derivative, the fifth derivative,
and so on.

Any derivative beyond the first derivative can be referred to as
a higher derivative.
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Examples

Find the first and the second derivatives of the following functions.

(i) f (x) = x3

(ii) g(x) = x3 − 6x2 + 9x − 2

(iii) y = x3 + ex
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Thank You
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