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Chapter 5

Limits
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Chapter 5
Section 5.1

Pre-Requisities for Limits
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What is infinity?

Infinity is the idea of something that has no end.

Infinity is not a real number, it is an idea.

That is used to represent something without an end.

Infinity cannot be measured.

Infinity is greater than any real number.

We use symbool ∞ to represent infinity.
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Special properties of infinity

1 ∞+∞ = ∞
2 −∞+ (−∞) = −∞
3 ∞×∞ = ∞
4 −∞×−∞ = ∞

5 −∞×∞ = −∞
6 x +∞ = ∞
7 −∞+ x = −∞
8 x − (−∞) = ∞
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Indeterminate form in Mathematics

The term ”indeterminate” is sometimes used as a synonym for
unknown or variable.

A mathematical expression can also be said to be
indeterminate if it is not definitively or precisely determined.

There are seven indeterminate forms involving 0, 1, and ∞.

They are,
0

0
, 0×∞,

∞
∞

,∞−∞, 00,∞0, 1∞.
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What is function?

A function is something like a machine.

It has an input and an output.

The output is related somehow to the input.
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What is function?
Cont...

It is useful to give a function a name.

f (x) is the classic way of writing a function.

The most common name is f , but you can have other names
like g , h, v , ... etc.
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Example

Consider the function f (x) = x2 + 7x − 6 and find followings.

(i) f (2)

(ii) f (−2)

(iii) f (
√
2)

Department of Mathematics University of Ruhuna — Mathematics for Biology 9/28



Chapter 5
Section 5.2

Introduction to Limits
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Why do we need limits?

In some situations, we cannot work something out directly.

But we can see how it behaves as we get closer and closer.

Let’s consider below function as an example:

f (x) =
(x2 − 1)

(x − 1)
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Why do we need limits?
Cont...

Let’s work it out for x=1:

f (1) =
(12 − 1)

(1− 1)

=
0

0

We don’t really know the value of 0/0.

So we need another way of answering this.

The limits can be used to give answer in such a situations.
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Why do we need limits?
Cont...

Instead of trying to work it out for x=1, let’s try approaching it
closer and closer from x < 1:

x
(x2 − 1)

(x − 1)
0.5 1.50000
0.9 1.90000

0.99 1.99000
0.999 1.99900

0.9999 1.99990
0.99999 1.99999

... ...
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Why do we need limits?
Cont...

Instead of trying to work it out for x=1, let’s try approaching it
closer and closer from x > 1:

x
(x2 − 1)

(x − 1)
1.5 2.50000
1.1 2.10000

1.01 2.01000
1.001 2.00100

1.0001 2.00010
1.00001 2.00001

... ...
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Why do we need limits?
Cont...

Now we can see that as x gets close to 1, then
(x2 − 1)/(x − 1) gets close to 2.

When x = 1 we don’t know the answer.

But we can see that it is going to be 2.
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Why do we need limits?
Cont...

We want to give the answer ”2” but can’t, so instead
mathematicians say exactly what is going on by using the
special word ”limit”.

The limit of (x2 − 1)/(x− 1) as x approaches 1 is 2

It can be written symbolicaly as:

lim
x→1

x2 − 1

x − 1
= 2.
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Properties of limit

Suppose f (x) and g(x) are functions of x and a and c are
constants. Then we have following properties for limit.

1 lim
x→a

c = c .

2 lim
x→a

cx = c lim
x→a

x .

3 lim
x→a

[f (x) + g(x)] = lim
x→a

f (x) + lim
x→a

g(x).

4 lim
x→a

[f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x).

5 lim
x→a

[f (x).g(x)] =
(
lim
x→a

f (x)
)
.
(
lim
x→a

g(x)
)
.

6 lim
x→a

(
f (x)

g(x)

)
=

lim
x→a

f (x)

limx→a g(x)
.
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Properties of limit
Examples

Find the following limits:

(i) lim
x→3

6.

(ii) lim
x→2

(6x).

(iii) lim
x→−1

(x3 + 7x2 + 3x + 6).

(iv) lim
t→3

(t2 − 5t).

(v) lim
x→2

(x2 + 7
√
x).

(vi) lim
x→−5

(1/x).

(vii) lim
x→4

(x + 5)(x + 6).

(viii) lim
x→2

x2 + 5x + 7

x + 4
.

(ix) lim
v→3

(
log(

√
5 + 2)v5

)
.

(x) lim
x→1

(x2 + 5x + 2)(2x + 5).
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Example 1

Find the limit of (4− 3x)/(5 + x) as,

(i) x � 1.

(ii) x � 4/3.

(iii) x � −5.

(iv) x � 0.
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Example 2

Find the following limits:

(i) lim
x→0

x3 − 7x2 − 3x

x
.

(ii) lim
x→1

x2−1
x−1 .

(iii) lim
x→2

x2 − 4

x − 2
.

(iv) lim
x→a

x2 − a2

x − a
.

(v) lim
t→1

2− 2t2

t − 1
.

(vi) lim
t→−1

2− 2t2

t − 1
.
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Example 3

Find the following limits:

(i) lim
x→∞

(5x).

(ii) lim
x→∞

(3x + 7).

(iii) lim
x→∞

(2x − 100).

(iv) lim
x→−∞

(2x).

(v) lim
x→∞

(
2x

x + 1

)
.

(vi) lim
x→∞

(
7x

2x − 5

)
.

(vii) lim
x→∞

(
7x2 + 5x + 1

4x2 + 3x + 5

)
.
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Excercise

Show the followings:

(i) lim
x→−1

(5x + 4) = −1.

(ii) lim
x→1

(5x2 + 7x + 3) = 15.

(iii) lim
x→−1

x2 + 5x + 3

2x
=

1

2
.

(iv) lim
x→∞

2x2 + 5x + 3

x2 + 6x + 9
= 2.

(v) lim
x→∞

(
2x2 + x

3x2 + 4

)
=

2

3
.

(vi) lim
x→3

x2 − 5x + 6

x − 3
= 1.

(vii) lim
x→3

(
x2 − 9

x − 3

)
= 6.
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Right and left hand limits

If f (x) approaches the value p as x approaches to c , we say p is
the limit of the function f (x) as x tends to c . That is

lim
x→c

f (x) = p.

Then we can define right and left hand limit as follows:

lim
x→c−

f (x) = p ⇐ Left Hand Limit,

lim
x→c+

f (x) = p ⇐ Right Hand Limit.
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Example 1

Use the graph to determine following limits:

(a) lim
x→1

f (x)

(b) lim
x→2

f (x)

(c) lim
x→3

f (x)

(d) lim
x→4

f (x)
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Example 1
Solution

(a) lim
x→1

f (x) = 2

(b) lim
x→2

f (x) = 1

(c) lim
x→3

f (x) ⇐ does not exist

(d) lim
x→4

f (x) = 1
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Example 2

The function f is defined by:

f (x) =

{
x + 3 if x ≤ 2
−x + 7 if x > 2.

What is lim
x→2

f (x).
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Example 2
Solution

Let’s consider the left and right hand side limits:

lim
x→2−

f (x) = lim
x→2−

x + 3 = 5

lim
x→2+

f (x) = lim
x→2+

−x + 7 = 5

We get same value for left and right hand limits. Hence

lim
x→2

f (x) = 5.
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Thank You
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