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Chapter 9

Derivatives of Vector Fields
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What is a vector field?

Derivative theory for vector fields is a straightforward
extension of that for scalar fields.

m Let f: $— R™ be a vector field defined on a subset $ of R".
m Then f consists of m scalar fields of n variables. That is,
f(a) = (fi(a), ..., fm(a)).

In here each f; : 8 — R is a scalar field, where i =1, ..., m.
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Definition
The derivative of a vector field

Let f: $ — R” be a vector field defined on a subset $ of R”. If a is
an interior point of 8 and if y is any vector in R” we define the
derivative f'(a;y) by the formula

F(ary) = ,Li“o f(a+ h);) - f(a)7

whenever the limit exists. The derivative f'(a;y) is a vector in R™.
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Differentiability in component wise

Let f, denote the k'™ component of f. We note that the derivative
f'(a;y) exists if and only if f/(a;y) exists for each k =1,2,...,m in
which case we have

f'(ary) = (f(ayy), ... ], = fl(aiy)er, = (A)
k=1

where e is the k™ unit coordinate vector.
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The total derivative of a vector field

We say that f is differentiable at an interior point a if there is a
linear transformation

T.:R"—R"
such that
f(a+v) = f(a) + Ta(v) + [|v|]E(a,v), (1)

where E(a,v) — 0 as v — 0. The first order Taylor formula (1) is
to hold for all v with ||v|| < r for some r > 0. The term E(a,v) is
a vector in R™. The linear transformation T, is called the total
derivative of f at a.
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The total derivative of a vector field
Cont...

m For scalar fields we proved that T,(y) is the dot product of
the gradient vector Vf(a) with y.

m For vector fields we will prove that T,(y) is a vector whose
k™™ component is the dot product V£ (a).y.
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Theorem (9.1)

Assume f is differentiable at a with total derivative T,. Then the

derivative f'(a;y) exists for every a in R", and we have

Ta(y) = f'(ay).

Moreover, if f = (f1, ..., f) and if y = (y1, ..., ¥n), we have

Ta(y) = Y _ Vfi(a).yex = (VA(a)y, ..., Vin(a).y).
k=1

()
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Theorem (9.1)
Proof

We argue as in the scalar case. If y =0, then f'(a;y) = 0 and
Ta(0) = 0. Therefore we can assume that y # 0. Taking v = hy
in the Taylor formula (1) we have

f(a+v)

f(a + hy)

f(a+ hy) —f(a)

im f(a+ hy) —f(a)
h—0 h

f'(a;y)

f(a) + Ta(v) + [lv][E(a, v)
f(a) + Ta(hy) + || hy||E(a, v)
hTa(y) + |hl[ly|[E(a, v)

i 1) | hlly (@)
h—0 h h—0 h
Ta(y)
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Theorem (9.1)

Proof=-Cont...

To prove (3) we simply note that

fay) = > fi(ay)ex (From (A))
k=1
= > Vfi(a).yex = (VA(a)y, .., Vfn(a).y)
k=1
Ta(y) = f(ajy) (From (2))
Ta(y) = > Vfi(a).yex = (VA(a).y, ..., Vfn(a).y).

x
Il
-

Hence the result.
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The Jacobian matrix of f at a

Equation (3) can also be written more simply as a matrix product,

Ta(Y) - Df(a)Ya

where Df(a) is the m x n matrix whose k" row is Vf(a), and
where y is regarded as an n x 1 column matrix. The matrix Df(a)
is called the Jacobian matrix of f at a. Its kj entry is the partial
derivative Djfi(a). Thus, we have

'lel(a) szl(a) D,,fl(a
D1f2(a) sz—z(a) anz(a

~— —

Dif(a) Dofn(a) ... Dufn(a)
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The Jacobian matrix of f at a
Cont...

m The Jacobian matrix Df(a) is defined at each point where the
mn partial derivatives D;f(a) exists.

m The total derivative T, is also written as f'(a).

m The derivative f'(a) is a linear transformation; the Jacobian
Df(a) is a matrix representation for this transformation.
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The Jacobian matrix of f at a
Cont...

The first-order Taylor formula takes the form
f(a+v) = f(a) + f'(a)(v) + [|lv[[E(a, v), (4)

where E(a,v) — 0 as v — 0. This resembles the one-dimensional
Taylor formula. To compute the components of the vector f'(a)(v)

we can use the matrix product Df(a)v or formula (3) of Theorem
(9.1).
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Theorem (9.2)

Differentiability implies continuity

If a vector field f is differentiable at a, then f is continuous at a.
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Theorem (9.2)

Differentiability implies continuity=-Proof

As in the scalar case, we use the Taylor formula to prove this
theorem.

If we let v — 0 in the first-order Taylor formula,

lim f(a +v) = lim f(a) + JI—% f'(a)(v) + Ji_r)no |Iv||[E(a, V).

v—0 v—0
The error term ||v||E(a,v) — 0.

The linear part f'(a)(v) also trends to 0 because linear
transformations are continuous at 0.

This completes the proof.
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Theorem (9.3)

Chain rule

Let f and g be vector fields such that the composition h=fog is
defined in a neighborhood of a point a. Assume that g is
differentiable at a, with total derivative g'(a). Let b = g(a) and
assume that f is differentiable at b, with total derivative f'(b).
Then h is differentiable at a, and the total derivative h’(a) is given
by

h(a) = f(b) o g'(a),

the composition of the linear transformations f'(b) and g'(a).
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Matrix form of the chain rule

Let h = f o g, where g is differentiable at a and f if differentiable
at b = g(a). The chain rule states that

W(a) = f(b) o g/(a).

We can express the chain rule in terms of the Jacobian matrices
Dh(a), Df(b), and Dg(a) which represent the linear
transformations h'(a), f'(b), and g’'(a), respectively.
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Matrix form of the chain rule
Cont...

Since composition of linear transformations corresponds to
multiplication of their matrices, we obtain

Dh(a) = Df(b)Dg(a), where b= g(a). (5)

This is called the matrix form of the chain rule.
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Matrix form of the chain rule
Cont...

It can also be written as a set of scalar equations by expressing
each matrix in terms of its entries.

Suppose that a € R, b = g(a) € R", and f(b) € R™.

Then h(a) € R™ and we can write

g = (gl, ...,g,,), f= (fl, cey fm), h = (hl, sy hm).
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Matrix form of the chain rule
Cont...

Then Dh(a) is an m x p matrix, Df(b) is an m x n matrix, and
Dg(a) is an n x p matrix, given by

Dh(a) = [D;hi(a)li?,,
Df(b) = [Difi(b)]7}24
Dg(a) = [ jgk(a)]k,jzl'
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Matrix form of the chain rule
Cont...

The matrix equation (5) is equivalent to mp scalar equations,
n
Djhi(a) = Z D fi(b)Djgk(a), for i =1,2,...,mand j =1,2,...,p.
k=1

These equations express the partial derivatives of the components
of h in terms of the partial derivatives of the components of f and

g.
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Example 1

Extended chain rule for scalar fields

Suppose f is a scalar field (m =1). Then h is also a scalar field
and there are p equations in the chain rule, one for each of the
partial derivatives of h:

ZDkf Djgx(a), for j =1,2,...,p

The special case p = 1 was already considered in the Chapter of
"A Chain Rule for Derivatives of Scalar Fields". In this case we get
only one equation,

= Z Dif(b)gi(a)
k=1
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Example 1

Extended chain rule for scalar fields=Cont...

Now take p =2 and n = 2. Write a = (s,t) and b = (x, y). Then
the components x and y are related to s and t by the equations

X:gl(sv t)a y:g2(5, t)'

The chain rule gives a pair of equations for the partial derivatives
of h:

Dlh(57 t) - le(xvy)Dlgl(sa t)+D2f(X>y)D1g2(Sv t)?
Dah(s,t) = Dif(x,y)Dagi(s,t) + Daf(x,y)Daga(s, t).
In the O-notation, this pair of equations is usually written as

oh  Ofdx _9f dy

9s ~ oxos oy os (6)
oh B of Ox  Of dy
ot~ oxot Toyor (7)
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Example 2

Polar coordinates

The temperature of a thin plate is described by a scalar field f, the
temperature at (x, y) being f(x,y). Polar coordinates x = r cos¥,
y = rsinf are introduced, and the temperature becomes a
function of r and 6 determined by the equation

o(r,0) = f(rcos@,rsin).

Express the partial derivatives Op/Jr and d¢/00 in terms of the
partial derivatives Of /Ox and Of /Jy.
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Example 2

Polar coordinates=-Cont...

We use the chain rule as expressed in Equations (6) and (7),
writing (r, 0) instead of (s, t), and ¢ instead of h. The equations

x =rcosf, y =rsinf

gives us
g): = cos b, g}r/ =sind, gg = —rsin, ?9/ = rcosf.
Substituting these formulas in (6) and (7) we obatain
g‘f — (g)’:cose+g; sin @, (8)
?g = —rgi sinf + rg; cos 6. 9)

0 0
These are the required formulas for 87g0 and 8?
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Example 3

Second-order partial derivatives

Refer to Example 2 and express the second-order partial derivatives
0%y . . o
370;0 in terms of partial derivatives of f.
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Example 3

Second-order partial derivatives=-Cont...

We begin with the formula for g—? in (9) and differentiate with

respect to 6, treating r as a constant. There are two terms on the
right, each of which must be differentiated as a product. Thus we

have
%p Of O(sin 0) .0 [Of Of O(cos0)
— = —r— —rsinf— r—
062 ox 00 00 \ Ox dy 00
—i—rcos@2 or
00 \ dy
0% of .0 [Of . Of
202 = —rcos@a — rsm9% <8x> — rsm@a
o (of
+rc059% <8y> . (10)

Department of Mathematics University of Ruhuna — Real Analysis [II(MAT3123) 27/30



Example 3

Second-order partial derivatives=-Cont...

To compute the derivatives of df /0x and Of /Oy with respect to 6
we must keep in mind that, as functions of r and 6, 9f /Ox and
Of /0y are composite functions given by

f f
gx = Dif(rcos@,rsin@) and gy = Dyf(rcos@,rsin0).
Therefore, thier derivatives with respect to # must be determined
by use of the chain rule. We again use (6) and (7) with f replaced
by D;f, to obtain

) <6f> _ ADif)ox | O(Dif) dy

90 \ Ox ox 00 dy 00
P, 92f
= @(—rsmé)—k é)yax(rcose).
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Example 3

Second-order partial derivatives=-Cont...

Similarly, using (6) and (7) with f replaced by D>f, we find

) (m) _ O(Daf)dx | O(Daf) By

90 \ dy ox 00 dy 06
2f 2
= 888 (—rsinf) + g Z(rcos&)

When these formulas are used in (10) we obtain

2 f 2f 2f
C{(‘))Qf = —rcosﬁgx + r?sin? ngz —r? sianosQai)/aX
of 2f 2
—rsin 9@ — r?sin 9C0598X8y + r? cos? 92}/2
2
Thi h f la f
is is the required formula for 202
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Thank you!
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