
Real Analysis III
(MAT312β)

Department of Mathematics
University of Ruhuna

A.W.L. Pubudu Thilan

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 1/38



Chapter 8

A Chain Rule for Derivatives of
Scalar Fields
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A function of a function

Consider the expression sin t2.

It is clear that this is different from the straightforward sine
function, sin t.

We are finding the sine of t2, not simply the sine of t.

We call such an expression a ”function of a function” or a
”composite function”.
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A function of a function
Cont...

Suppose, in general, that we have two functions, f (t) and
r(t).

Then g(t) = f [r(t)] is a function of a function.

In our case, the function f is the sine function and the
function r is the square function.

We could identify them more mathematically by saying that
f (t) = sin t and r(t) = t2, so that f [r(t)] = f (t2) = sin t2.
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The chain rule in one-dimensional space

In one-dimensional derivative theory, the chain rule enables us to
compute the derivative of a function of a function g(t) = f [r(t)]
by the formula

g ′(t) = f ′[r(t)].r ′(t).
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The chain rule in one-dimensional space
Examples

(i) y = sin x2

(ii) y = (2x − 3)12

(iii) y = ex
3

(iv) y = e1+x2

(v) y = sin(x + ex)
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The chain rule for derivatives of scalar fields

This Chapter provides an extension of the formula when f is
replaced by a scalar field defined on a set in n-space and r is
replaced by a vector-valued function of a real variable with values
in the domain of f .
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The chain rule for derivatives of scalar fields
Cont...

It is easy to conceive of examples in which the composition of
a scalar field and a vector field might arise.

For instance, suppose f (x) measures the temperature at a
point x of a solid in 3-space, and suppose we wish to know
how the temperature changes as the point x varies along a
curve C lying in the solid.

If the curve is described by a vector-valued function r defined
on an interval [a, b], we can introduce a new function g by
means of the formula

g(t) = f [r(t)] if a ≤ t ≤ b.
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The chain rule for derivatives of scalar fields
Cont...

This composite function g expresses the temperature as a
function of the parameter t, and its derivative g ′(t) measures
the rate of chage of the temperature along the curve.

The following extension of the chain rule enables us to
compute the derivative g ′(t) without determining g(t)
explicitly.
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Theorem 8.1
Chain rule

Let f be a scalar field defined on an open set S in Rn, and let r be
a vector-valued function which maps an interval J from R1 into S.
Define the composite function g = f ◦ r on J by the equation

g(t) = f [r(t)] if t ∈ J.

Let t be a point in J at which r′(t) exists and assume that f is
differentiable at r(t). Then g ′(t) exists and is equal to the dot
product

g ′(t) = ▽f (a).r′(t), where a = r(t). (1)
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Theorem 8.1
Chain rule⇒Proof

Let a = r(t), where t is a point in J at which r′(t) exists.

Since S is open there is an n-ball B(a) lying in S.

We take h ̸= 0 but small enough so that r(t + h) lies in B(a), and
we let y = r(t + h)− r(t).

Note that y → 0 as h → 0.

Now we have

g(t + h)− g(t) = f [r(t + h)]− f [r(t)]

= f (a+ y)− f (a). (2)
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Theorem 8.1
Chain rule⇒Proof

Applying the first-order Taylor formula for f we have

f (a+ y)− f (a) = ▽f (a).y + ∥y∥E (a, y), (3)

where E (a, y) → 0 as ∥y∥ → 0.

From (2) and (3) we have

g(t + h)− g(t) = ▽f (a).y + ∥y∥E (a, y).

Since y = r(t + h)− r(t) this gives us

g(t + h)− g(t)

h
= ▽f (a).r(t + h)− r(t)

h

+
∥r(t + h)− r(t)∥

h
E (a, y)
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Theorem 8.1
Chain rule⇒Proof

By letting h → 0 we obtain:

lim
h→0

g(t + h)− g(t)

h
= lim

h→0
▽f (a).r(t + h)− r(t)

h

+ lim
h→0

∥r(t + h)− r(t)∥
h

E (a, y)

lim
h→0

g(t + h)− g(t)

h
= ▽f (a). lim

h→0

r(t + h)− r(t)

h
+ 0

g ′(t) = ▽f (a).r′(t).
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Example 1
Directional derivative along a curve

When the function r describes a curve C , the derivative r′ is
the velocity vector (tangent to the curve) and derivative g ′ in
Equation (1) is the derivative of f with respect to the velocity
vector, assuming that r′ ̸= 0.

If T(t) is a unit vector in the direction of r′(t) (T is the unit
tangent vector), the dot product ▽f [r(t)].T(t) is called the
directional derivative of f along the curve C or in the
direction of C .

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 14/38



Example 1
Directional derivative along a curve⇒Cont...

For a plane curve we can write

T(t) = cosα(t)i+ cosβ(t)j,

where α(t) and β(t) are the angles made by the vector T(t)
and the positive x- and y -axes; the directional derivative of f
along C becomes

▽f [r(t)].T(t) = D1f [r(t)] cosα(t) + D2f [r(t)] cosβ(t).
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Example 1
Directional derivative along a curve⇒Cont...

This formula is often written more briefly as

▽f .T =
∂f

∂x
cosα+

∂f

∂y
cosβ.

Since the directional derivative along C is defined in terms of
T, its value depends on the parametric representation chosen
for C .

A change of the representation could reverse the direction of
T; this in turn, would reverse the sign of the directional
derivative.
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Example 2

Find the directional derivative of the scalar field f (x , y) = x2 − 3xy
along the parabola y = x2 − x + 2 at the point (1,2).
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Example 2
Cont...

At an arbitary point (x , y) the gradient vector is

▽f (x , y) =
∂f

∂x
i+

∂f

∂y
j

= (2x − 3y)i− 3x j.

At the point (1,2) we have ▽f (1, 2) = −4i− 3j.

The parabola can be represented parametrically by the vector
equation r(t) = ti+ (t2 − t + 2)j.

Therefore r(1) = i+ 2j, r′(t) = i+ (2t − 1)j, and r′(1) = i+ j.

For this representation of C the unit tangent vector T(1) is
(i+ j)/

√
2 and the required directional derivative is

▽f (1, 2).T(1) = −7/
√
2.
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Example 3

Let f be nonconstant scalar field, differentiable everywhere in the
plane, and let c be a constant. Assume the Cartesian equation
f (x , y) = c describes a curve C having a tangent at each of its
points. Prove that f has the following properties at each point of
C :

(a) The gradient vector ▽f is normal to C .

(b) The directional derivative of f is zero along C .

(c) The directional derivative of f has its largest value in a
direction normal to C .
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Example 3
Cont...

If T is a unit tangent vector to C , the directional derivative of f
along C is the dot product ▽f .T.

This product is zero if ▽f is perpendicular to T, and it has its
largest value if ▽f is parallel to T.

Therefore both statements (b) and (c) are consequences of (a).

To prove (a), consider any plane curve Γ with a vector equation of
the form r(t) = X (t)i+ Y (t)j and introduce the function
g(t) = f [r(t)].
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Example 3
Cont...

By the chain rule we have g ′(t) = ▽f [r(t)].r′(t).

When Γ = C , the function g has the constant value c so g ′(t) = 0
if r(t) ∈ C .

Since g ′ = ▽f .r′, this shows that ▽f is perpendicular to r′ on C ;
hence ▽f is normal to C .
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Level sets

Let f be a scalar field defined on a set S in Rn and consider those
points x in S for which f (x) has a constant value, say f (x) = c .
Denote this set by L(c), so that

L(c) = {x|x ∈ S and f (x) = c}.

The set L(c) is called a level set of f . In R2, L(c) is called a level
curve; in R3, it is called a level surface.
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Level sets
Level curve

A level curve of a function f (x , y) is the curve of points (x , y)
where f (x , y) is some constant value.

A level curve is simply a cross section of the graph of
z = f (x , y) taken at a constant value, say z = c .

A function has many level curves, as one obtains a different
level curve for each value of c in the range of f (x , y).

We can plot the level curves for a bunch of different constants
c together in a level curve plot, which is sometimes called a
contour plot.
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Level sets
Level curve⇒Cont...

Figure: The graph of the function f (x , y) = −x2 − 2y2 is shown along
with a level curve plot.
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Level sets
Level curve⇒Cont...

Consider z = f (x , y) = 4x2 + y2.

The figure below shows the level curves, defined by
f (x , y) = c , of the surface.

The level curves are the ellipses 4x2 + y2 = c .

As the plot shows, the gradient vector at (x , y) is normal to
the level curve through (x , y).
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Level sets
Level surface

Now consider a scalar field f differentiable on an open set S in
R3, and examine one of its level surfaces, L(c).

Let a be a point on this surface, and consider a curve Γ which
lies on the surface and passes through a.

We shall prove that the gradient vector ▽f (a) is normal to
this curve at a.
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Level sets
Level surface⇒Cont...

That is, we shall prove that ▽f (a) is perpendicular to the
tangent vector of Γ at a.

For this purpose we assume that Γ is described parametrically
by a differentiable vector-valued function r defined on some
interval j in R1.

Since Γ lies on the level surface L(c), the function r satisfies
the equation

f [r(t)] = c for all t in j.
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Level sets
Level surface⇒Cont...

If g(t) = f [r(t)] for t in j, the chain rule states that

g ′(t) = ▽f [r(t)].r′(t).

Since g is a constant on j, we have g ′(t) = 0 on j. In
particular, choosing t1 so that r(t1) = a, we find that

▽f (a).r′(t1) = 0.

In other words, the gradient of f at a is perpendicular to the
tangent vector r′(t1), as asserted.
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Level sets
Level surface⇒Cont...

Now we take family of curves on the level surface L(c), all
passing through the point a.

According to the foregoing discussion, the tangent vectors of
all these curves are perpendicular to the gradient vector
▽f (a).

If ▽f (a) is not the zero vector, these tangent vectors
determine a plane, and the gradient ▽f (a) is normal to this
plane.

This particular plane is called as the tangent plane of the
surface L(c) at a.
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Level sets
Level surface⇒Cont...

We know that a plane through a with normal vector N
consists of all points x ∈ R3 satisfying N.(x− a) = 0.

Therefore the tangent plane to the level surface L(c) at a
consists of all x in R3 satisfying

▽f (a).(x− a) = 0.
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Level sets
Level surface⇒Cont...

To obtain a Cartesian equation for this plane we express x, a,
and ▽f (a) in terms of thier components.

Writing x = (x , y , z), a = (x1, y1, z1) and

▽f (a) = D1f (a)i+ D2f (a)j+ D3f (a)k,

we obtain the Cartesian equation

D1f (a)(x − x1) + D2f (a)(y − y1) + D3f (a)(z − z1) = 0.
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Level sets
Level surface⇒Cont...

A similar discussion applies to a scalar fields defined in R2.

In Example 3 we proved that the gradient vector ▽f (a) at a
point a of a level curve is perpendicular to the tangent vector
of the curve at a.

Therefore the tangent line of the level curve L(c) at a point
a = (x1, y1) has the Cartesian equation

D1f (a)(x − x1) + D2f (a)(y − y1) = 0.
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The equation of the tangent plane

Consider the surface z = f (x , y). If Z = f (X ,Y ), then (X ,Y ,Z )T

is a point on the surface z = f (x , y). If the surface admits a non
vertical tangent plane at (X ,Y ,Z )T , then we say that f is
differentiable at (X ,Y )T .

Figure: The tangent plane
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The equation of the tangent plane
Cont...

If f is differentiable at (X ,Y )T its tangent plane must have
equation

z − Z = fx(X ,Y )(x − X ) + fy (X ,Y )(y − Y ).

We usually write this in the less precise form

z − Z =
∂f

∂x
(X ,Y )(x − X ) +

∂f

∂y
(X ,Y )(y − Y ).

N.B Partial derivatives are to be evaluated at the point (X ,Y )T .
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Example

Let f (x , y) =
x − y

x + y
.

(a) Compute ∂f
∂x and ∂f

∂y .

(b) Find the equation of the tangent plane to the surface
z = f (x , y) where x = 1 and y = 1.
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Example
Solution

(a)

f (x , y) =
x − y

x + y

∂f

∂x
=

(x + y).1− (x − y).1

(x + y)2

=
2y

(x + y)2
.

∂f

∂y
=

(x + y).(−1)− (x − y).1

(x + y)2

=
−2x

(x + y)2
.
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Example
Solution

(b) The tangent plane must have equation

z − Z = fx(X ,Y )(x − X ) + fy (X ,Y )(y − Y ).

The equation of the tangent plane to the surface z = f (x , y),
where X = 1 and Y = 1 is

z − Z = fx(1, 1)(x − 1) + fy (1, 1)(y − 1),

where Z = f (1, 1). The required equation is

z =
1

2
(x − 1)− 1

2
(y − 1).
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Thank you!
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