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Chapter 8

A Chain Rule for Derivatives of
Scalar Fields
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A function of a function

m Consider the expression sin t2.

It is clear that this is different from the straightforward sine
function, sin t.

m We are finding the sine of t2, not simply the sine of t.

m We call such an expression a " function of a function” or a
" composite function”.
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A function of a function

Cont...
m Suppose, in general, that we have two functions, f(t) and
r(t).
m Then g(t) = f[r(t)] is a function of a function.

m In our case, the function f is the sine function and the
function r is the square function.

m We could identify them more mathematically by saying that
f(t) =sint and r(t) = t2, so that f[r(t)] = f(t?) = sin t2.
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The chain rule in one-dimensional space

In one-dimensional derivative theory, the chain rule enables us to
compute the derivative of a function of a function g(t) = f[r(t)]
by the formula

g'(t) = f[r(t)].r'(t).
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The chain rule in one-dimensional space
Examples

(i) y = sinx?
(i) y = (2x — 3"
(i) y = e*
(iv) y = el +x?
(v) y =sin(x + e¥)
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The chain rule for derivatives of scalar fields

This Chapter provides an extension of the formula when f is
replaced by a scalar field defined on a set in n-space and r is
replaced by a vector-valued function of a real variable with values
in the domain of f.

Department of Mathematics University of Ruhuna — Real Analysis [II(MAT3123)



The chain rule for derivatives of scalar fields
Cont...

m It is easy to conceive of examples in which the composition of
a scalar field and a vector field might arise.

m For instance, suppose f(x) measures the temperature at a
point x of a solid in 3-space, and suppose we wish to know
how the temperature changes as the point x varies along a
curve C lying in the solid.

m If the curve is described by a vector-valued function r defined
on an interval [a, b], we can introduce a new function g by
means of the formula

g(t)="fr(t)] ifat<bh.
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The chain rule for derivatives of scalar fields
Cont...

m This composite function g expresses the temperature as a
function of the parameter t, and its derivative g’(t) measures
the rate of chage of the temperature along the curve.

m The following extension of the chain rule enables us to
compute the derivative g’(t) without determining g(t)
explicitly.
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Theorem 8.1

Chain rule

Let f be a scalar field defined on an open set $in R”, and let r be
a vector-valued function which maps an interval J from R! into $.
Define the composite function g = f or on J by the equation

g(t)=fr(t)] ifted.

Let t be a point in J at which r/(t) exists and assume that f is
differentiable at r(t). Then g’(t) exists and is equal to the dot
product

g'(t) = vf(a).r(t), where a = r(t). (1)
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Theorem 8.1

Chain rule=-Proof

Let a = r(t), where t is a point in J at which r'(t) exists.
Since $ is open there is an n-ball B(a) lying in $.

We take h # 0 but small enough so that r(t + h) lies in B(a), and
we let y = r(t + h) —r(t).

Note that y — 0 as h — 0.
Now we have

g(t+h)—g(t) = flr(t+h)]—flr(t)]
= f(a+y)—f(a). (2)
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Theorem 8.1

Chain rule=-Proof

Applying the first-order Taylor formula for f we have

f(a+y)—f(a) = vi(a)y +[lyllE(a,y), (3)
where E(a,y) — 0 as |ly|| — 0.
From (2) and (3) we have

g(t+h) —g(t)=vf(a)y+|ylE(ay).

Since y = r(t + h) — r(t) this gives us

g(t+h)—g(t) _ r(t+h) —r(t)
) Vf(a).f
0=l

Department of Mathematics University of Ruhuna — Real Analysis [II(MAT3123) 12/38



Theorem 8.1

Chain rule=-Proof

By letting h — 0 we obtain:

g(t+h) —g(t)

h—0

h—0

li =
im p

A@va(a)'r(t + h/)1 —r(t)
+ lim [[r(t + hlz —r(1)|| Ea.y)
vf(a). lim "EEN =)

h—0
vf(a).r'(t).
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Example 1

Directional derivative along a curve

m When the function r describes a curve C, the derivative r' is
the velocity vector (tangent to the curve) and derivative g’ in
Equation (1) is the derivative of f with respect to the velocity
vector, assuming that v’ # 0.

m If T(t) is a unit vector in the direction of ¥'(t) (T is the unit
tangent vector), the dot product V7 [r(t)].T(t) is called the
directional derivative of f along the curve C or in the
direction of C.

Department of Mathematics University of Ruhuna — Real Analysis [II(MAT3123)

14/38



Example 1

Directional derivative along a curve=-Cont...

m For a plane curve we can write
T(t) = cos a(t)i + cos B(t)j,

where a(t) and (t) are the angles made by the vector T(t)
and the positive x- and y-axes; the directional derivative of f
along C becomes

VE[r(£)].T(t) = Dyf[r(t)] cos a(t) + Daf[e(t)] cos 5(t).
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Example 1

Directional derivative along a curve=-Cont...

m This formula is often written more briefly as

of of
VFET = — + = cos 3.
» COos &« y COS ﬁ

m Since the directional derivative along C is defined in terms of
T, its value depends on the parametric representation chosen
for C.

m A change of the representation could reverse the direction of
T; this in turn, would reverse the sign of the directional
derivative.
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Example 2

Find the directional derivative of the scalar field f(x,y) = x> — 3xy
along the parabola y = x? — x + 2 at the point (1,2).
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Example 2

Cont...

At an arbitary point (x,y) the gradient vector is

of . Of,
Vi(x,y) = al—i-@

= (2x —3y)i— 3x].
At the point (1,2) we have Vf(1,2) = —4i — 3j.

The parabola can be represented parametrically by the vector
equation r(t) = ti + (t2 — t + 2)j.
Therefore r(1) =i+ 2j, ¥'(t) =i+ (2t — 1)j, and ¥'(1) =i +]j.

For this representation of C the unit tangent vector T(1) is
(i+j)/V2 and the required directional derivative is
VF(1,2).T(1) = -7/V2.
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Example 3

Let f be nonconstant scalar field, differentiable everywhere in the
plane, and let ¢ be a constant. Assume the Cartesian equation
f(x,y) = c describes a curve C having a tangent at each of its
points. Prove that f has the following properties at each point of
C:

(a) The gradient vector Vf is normal to C.

(b) The directional derivative of f is zero along C.

(

c) The directional derivative of f has its largest value in a
direction normal to C.
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Example 3
Cont...

If T is a unit tangent vector to C, the directional derivative of f
along C is the dot product Vf.T.

This product is zero if Vf is perpendicular to T, and it has its
largest value if V£ is parallel to T.

Therefore both statements (b) and (c) are consequences of (a).

To prove (a), consider any plane curve ' with a vector equation of
the form r(t) = X(t)i + Y(t)j and introduce the function

g(t) = fr(t)].
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Example 3
Cont...

By the chain rule we have g’(t) = Vf[r(t)].r'(¢).

When ' = C, the function g has the constant value ¢ so g’(t) =0
if r(t) e C.

Since g’ = Vf.r, this shows that Vf is perpendicular to ¥’ on C;
hence Vf is normal to C.
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Level sets

Let f be a scalar field defined on a set $in R” and consider those
points x in & for which f(x) has a constant value, say f(x) = c.
Denote this set by L(c), so that

L(c) = {x|x € $and f(x) = c}.

The set L(c) is called a level set of f. In R?, L(c) is called a level
curve; in B3, it is called a level surface.

Department of Mathematics University of Ruhuna — Real Analysis [II(MAT3123) 22/38



Level sets
Level curve

m A level curve of a function f(x,y) is the curve of points (x, y)
where f(x,y) is some constant value.

m A level curve is simply a cross section of the graph of
z = f(x, y) taken at a constant value, say z = c.

m A function has many level curves, as one obtains a different
level curve for each value of ¢ in the range of f(x,y).

We can plot the level curves for a bunch of different constants
¢ together in a level curve plot, which is sometimes called a
contour plot.
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Level sets
Level curve=-Cont...

2.8

Figure: The graph of the function f(x,y) = —x? — 2y? is shown along
with a level curve plot.
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Level sets
Level curve=-Cont...

m Consider z = f(x,y) = 4x? + y°.

The figure below shows the level curves, defined by
f(x,y) = c, of the surface.

The level curves are the ellipses 4x? + y? = c.

As the plot shows, the gradient vector at (x,y) is normal to

the level curve through (x, y). . T

.

Department of Mathematics University of Ruhuna — Real Analysis [II(MAT3123)



Level sets
Level surface

m Now consider a scalar field f differentiable on an open set $ in
R3, and examine one of its level surfaces, L(c).

m Let a be a point on this surface, and consider a curve [ which
lies on the surface and passes through a.

m We shall prove that the gradient vector Vf(a) is normal to
this curve at a.
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Level sets
Level surface=-Cont...

m That is, we shall prove that Vf(a) is perpendicular to the
tangent vector of I at a.

m For this purpose we assume that [ is described parametrically
by a differentiable vector-valued function r defined on some
interval j in Rl

m Since I lies on the level surface L(c), the function r satisfies
the equation

flr(t)] = cfor all t in 3.
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Level sets
Level surface=-Cont...

m If g(t) = f[r(t)] for t in 3, the chain rule states that

g'(t) = vf[r(t)].r (t).

m Since g is a constant on j, we have g’(t) =0 on 3. In
particular, choosing t; so that r(t;) = a, we find that

vf(a).r(t;) =0.

m In other words, the gradient of f at a is perpendicular to the
tangent vector ¥'(t1), as asserted.
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Level sets
Level surface=-Cont...

m Now we take family of curves on the level surface L(c), all
passing through the point a.

m According to the foregoing discussion, the tangent vectors of
all these curves are perpendicular to the gradient vector
vf(a).

m If Vf(a) is not the zero vector, these tangent vectors
determine a plane, and the gradient Vf(a) is normal to this
plane.

m This particular plane is called as the tangent plane of the
surface L(c) at a.
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Level sets
Level surface=-Cont...

m We know that a plane through a with normal vector N
consists of all points x € R satisfying N.(x —a) = 0.

m Therefore the tangent plane to the level surface L(c) at a
consists of all x in R® satisfying

vf(a).(x —a) =0.
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Level sets
Level surface=-Cont...

m To obtain a Cartesian equation for this plane we express x, a,
and V£(a) in terms of thier components.

m Writing x = (x, y, z), a= (x1, 1, z1) and
vf(a) = Dif(a)i+ Dyf(a)j + Dsf(a)k,
we obtain the Cartesian equation

Dyif(a)(x = x1) + Daf(a)(y — 1) + Dsf(a)(z — z1) = 0.
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Level sets
Level surface=-Cont...

m A similar discussion applies to a scalar fields defined in R?.

m In Example 3 we proved that the gradient vector Vf(a) at a
point a of a level curve is perpendicular to the tangent vector
of the curve at a.

m Therefore the tangent line of the level curve L(c) at a point
a = (x1,y1) has the Cartesian equation

Dif(a)(x — x1) + Daf(a)(y — y1) = 0.
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The equation of the tangent plane

Consider the surface z = f(x,y). If Z = f(X,Y), then (X,Y,2Z)7
is a point on the surface z = f(x,y). If the surface admits a non
vertical tangent plane at (X, Y, Z)7, then we say that f is
differentiable at (X, Y).

Figure: The tangent plane
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The equation of the tangent plane
Cont...

If f is differentiable at (X, Y)T its tangent plane must have
equation

2— 7 =£(X,Y)(x = X) + £,(X,Y)(y — Y).

We usually write this in the less precise form

of of
z— 7= 5()(’ Y)(X—X)—i-afy(X, Y)(y—Y).

N.B Partial derivatives are to be evaluated at the point (X, Y)7.
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Example

Xy
Let f(x,y) = .
)= 7

(a) Compute % 9% and m

(b) Find the equation of the tangent plane to the surface
z=1"f(x,y) where x =1and y = 1.
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Example
Solution

flx,y) = i;i
of  _ (x+y)l-(x—y)l
ox (x +y)?
_ %y
 (x+y)?
of _ (x+y)(=1)—-(x-y)1
dy (x+y)?
B —2x
C (x+y)?
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Example
Solution

(b) The tangent plane must have equation
z=Z =X Y)(x = X)+ H(X, Y)(y = Y).

The equation of the tangent plane to the surface z = f(x, y),
where X =1and Y =11s

z—Z="Ff(11)(x—-1)+£f,(1,1)(y — 1),

where Z = f(1,1). The required equation is

1

1
z=S(x-1) -5 - 1)
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Thank you!
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