

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312 β)

Chapter 6

The Total Derivative

Introduction

- In the previous Chapter, we discussed partial derivatives, which represent the instantaneous rates of change of a function, f, with respect to a single variable, while keeping all of the other independent variables constant.
- We can think of each partial derivative as the instantaneous rate of change of f, at a point a, as the point moves in a direction parallel to the corresponding coordinate axis.

Introduction Cont...

- Another way to say this is that the partial derivative, with respect to x_i is the instantaneous rate of change of f, at a point a, as the point moves in the direction of the corresponding standard basis vector, e_i.
- This naturally leads us to look at the instantaneous rates of change of f, at a point a, as the point moves in an arbitrary direction, with an arbitrary speed, i.e., as the point moves with an arbitrary velocity v.
- Thus, we define the total derivative of f, at a, not as a number, but rather as a function which returns a number for each specified velocity vector.

Approximating a differentiable function by a linear function

- How your calculator gives answer for sin x for any particular value of x that you request?
- It can not remember sin value for every x, because this requires more memory.
- So it uses a polynomial approximation for that.

Approximating a differentiable function by a linear function $\ensuremath{\mathsf{Example}}$

$$f'(a) \simeq \frac{f(x) - f(a)}{(x - a)}$$

$$f(x) \simeq f(a) + f'(a)(x - a)$$
For example $x = 0.2 \Rightarrow$

$$\sin(0.2) \simeq \sin 0 + \cos 0(0.2 - 0)$$

$$\simeq 0.2$$

 We can obtain a better result using higher order Taylor polynomials. We recall that in the one-dimensional case a function f with a derivative at a can be approximated near a by a linear Taylor polynomial. If f'(a) exists we let E(a, h) denote the difference

$$E(a,h) = \begin{cases} \frac{f(a+h) - f(a)}{h} - f'(a) & \text{if } h \neq 0, \\ 0 & \text{if } h = 0. \end{cases}$$
(1)

Approximating a differentiable function by a Taylor polynomial Cont...

From (1) we obtain the formula;

$$f(a+h) = f(a) + f'(a)h + hE(a,h),$$

an equation which holds also for h = 0.

- This is the first-order Taylor formula for approximating f(a+h) f(a) by f'(a)h.
- The error committed is hE(a, h).
- From (1) we see that $E(a, h) \rightarrow 0$ as $h \rightarrow 0$.
- Therefore the error hE(a, h) is of smaller order than h for small h.

The concept of differentiability in higher-dimensional space

- This property of approximating a differentiable function by a linear function suggests a way of extending the concept of differentiability to the higher-dimensional case.
- Let $f : \mathbb{S} \to \mathbb{R}$ be a scalar field defined on a set \mathbb{S} in \mathbb{R}^n .
- Let **a** be an interior point of S, and let **B**(**a**; *r*) be an *n*-ball lying in S.
- Let **v** be a vector with $\|\mathbf{v}\| < r$, so that $\mathbf{a} + \mathbf{v} \in \mathbf{B}(\mathbf{a}; r)$.

We say that f is differentiable at \mathbf{a} if there exists a linear transformation

$$T_{\mathbf{a}}: \mathbb{R}^n \to \mathbb{R}$$

from \mathbb{R}^n to \mathbb{R} , and a scalar function $E(\mathbf{a}, \mathbf{v})$ such that

$$f(\mathbf{a} + \mathbf{v}) = f(\mathbf{a}) + T_{\mathbf{a}}(\mathbf{v}) + \|\mathbf{v}\| E(\mathbf{a}, \mathbf{v}),$$
(2)

for $\|\mathbf{v}\| < r$, where $E(\mathbf{a}, \mathbf{v}) \to 0$ as $\|\mathbf{v}\| \to 0$. The linear transformation $T_{\mathbf{a}}$ is called the total derivative of f at \mathbf{a} .

- The total derivative T_a is a linear transformation, not a number.
- The function value T_a(v) is a real number; it is defined for every point v in ℝⁿ.
- The total derivative was introduced by W.H. Young in 1908 and by M. Frechet in 1911 in more general context.

- The equation (2), which holds for ||v|| < r, is called a first-order Taylor formula for f(a + v).</p>
- It gives a linear approximation, $T_{\mathbf{a}}(\mathbf{v})$, to the difference $f(\mathbf{a} + \mathbf{v}) f(\mathbf{a})$.
- The error in the approximation is ||v||E(a, v), a term which is of smaller order than ||v|| as ||v|| → 0; that is, E(a, v) = O(||v||) as ||v|| → 0.

Assume f is differentiable at **a** with total derivative T_a . Then the derivative $f'(\mathbf{a}; \mathbf{y})$ exists for every **y** in \mathbb{R}^n and we have

$$T_{\mathbf{a}}(\mathbf{y}) = f'(\mathbf{a}; \mathbf{y}). \tag{3}$$

Moreover, $f'(\mathbf{a}; \mathbf{y})$ is a linear combination of the components of \mathbf{y} . In fact, if $\mathbf{y} = (y_1, ..., y_n)$, we have

$$f'(\mathbf{a};\mathbf{y}) = \sum_{k=1}^{n} D_k f(\mathbf{a}) y_k.$$
(4)

Theorem (6.1) Proof

The equation (3) holds trivially if $\mathbf{y} = \mathbf{0}$ since both $T_{\mathbf{a}}(\mathbf{0}) = 0$ and $f'(\mathbf{a}; \mathbf{0}) = 0$.

Therefore we can assume that $\mathbf{y} \neq \mathbf{0}$.

Since f is differentiable at a we have a Taylor formula,

$$f(\mathbf{a} + \mathbf{v}) = f(\mathbf{a}) + T_{\mathbf{a}}(\mathbf{v}) + \|\mathbf{v}\| E(\mathbf{a}, \mathbf{v}),$$
(5)

for $\|\mathbf{v}\| < r$ for some r > 0, where $E(\mathbf{a}, \mathbf{v}) \to 0$ as $\|\mathbf{v}\| \to 0$. In this formula we take $\mathbf{v} = h\mathbf{y}$, where $h \neq 0$ and $|h| \|\mathbf{y}\| < r$. Then $\|\mathbf{v}\| < r$.

Since T_a is linear we have $T_a(\mathbf{v}) = T_a(h\mathbf{y}) = hT_a(\mathbf{y})$.

Therefore (5) gives us

$$f(\mathbf{a} + \mathbf{v}) = f(\mathbf{a}) + T_{\mathbf{a}}(\mathbf{v}) + \|\mathbf{v}\| E(\mathbf{a}, \mathbf{v})$$

$$f(\mathbf{a} + h\mathbf{y}) = f(\mathbf{a}) + hT_{\mathbf{a}}(\mathbf{y}) + |h| \|\mathbf{y}\| E(\mathbf{a}, \mathbf{v})$$

$$f(\mathbf{a} + h\mathbf{y}) - f(\mathbf{a}) = hT_{\mathbf{a}}(\mathbf{y}) + |h| \|\mathbf{y}\| E(\mathbf{a}, \mathbf{v})$$

$$\frac{f(\mathbf{a} + h\mathbf{y}) - f(\mathbf{a})}{h} = T_{\mathbf{a}}(\mathbf{y}) + \frac{|h| \|\mathbf{y}\|}{h} E(\mathbf{a}, \mathbf{v}).$$
(6)

- Since ||v|| → 0 as h → 0 and since |h|/h = ±1, the right hand member of (6) tends to the limit T_a(y) as h → 0.
- Therefore the left-hand member tends to the same limit.
- This proves (3).

Theorem (6.1) Proof

Now we use the linearity of T_a to deduce (4). If $\mathbf{y} = (y_1, ..., y_n)$ we have $\mathbf{y} = \sum_{k=1}^n y_k \mathbf{e}_k$, hence

$$(\mathbf{y}) = T_{\mathbf{a}} \left(\sum_{k=1}^{n} y_k \mathbf{e}_k \right)$$
$$= \sum_{k=1}^{n} y_k T_{\mathbf{a}}(\mathbf{e}_k)$$
$$= \sum_{k=1}^{n} y_k f'(\mathbf{a}; \mathbf{e}_k)$$
$$= \sum_{k=1}^{n} y_k D_k f(\mathbf{a}).$$

 T_{a}

Thank you!