

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

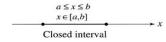
Chapter 2

Open Sets

Open and closed intervals in ${\rm I\!R}$

- Given two real numbers a and b with a < b, the closed interval [a, b] is defined as the set of all real numbers x such that a ≤ x and x ≤ b, or more concisely, a ≤ x ≤ b.</p>
- The open interval (a, b) is defined as the set of all real numbers x such that a < x < b.</p>
- The difference between the closed interval [a, b] and the open interval (a, b) is that the end points a and b are elements of [a, b] but are not elements of (a, b).

Open interval



The importance of open intervals

- Open intervals play an important role in calculus of a function of a single real variable.
- Recall the definition of a local minimum (or maximum).
- Let $f : \mathbb{D} \to \mathbb{R}$, $(\mathbb{D} \subset \mathbb{R})$. Then we say that a point $c \in \mathbb{D}$ is a local minimum of f if there is an **open interval** U such that $c \in U$ and $f(x) \ge f(c) \ \forall x \in U \cap D$.
- Open intervals are used in many other definitions.

Generalization of open intervals into \mathbb{R}^n

- The concept of the open interval in R can be generalized to a subset of Rⁿ.
- The generalized version of the open interval is called as open sets.
- A number of important results that we shall obtain on the functions of several variables are only true when the domains of these functions are open sets.

Open balls

Let a = (a₁, a₂, ..., a_n) be a given point in Rⁿ and let r be a given positive number. The set of all points x = (x₁, x₂, ..., x_n) in Rⁿ such that,

$$\|\mathbf{x} - \mathbf{a}\| < r,$$

is called an open *n*-ball of radius *r* and center **a**.

- We denote this set by **B**(a) or by **B**(a; r).
- The ball B(a; r) consists of all points whose distance from a is less than r. So it can be written in symbolic form as,

$$\mathbf{B}(\mathbf{a}; r) = \{\mathbf{x} \in \mathbb{R}^n | \|\mathbf{x} - \mathbf{a}\| < r\}.$$

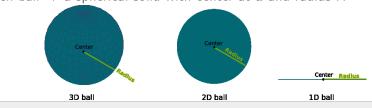
 \blacksquare In \mathbb{R}^1

Open ball \Rightarrow an open interval with center at *a*.

In \mathbb{R}^2

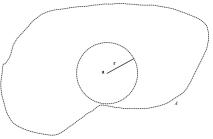
Open ball \Rightarrow a circular disk with center at **a** and radius *r*.

■ In \mathbb{R}^3 Open ball \Rightarrow a spherical solid with center at **a** and radius *r*.

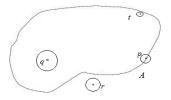


Department of Mathematics University of Ruhuna — Real Analysis III(MAT312 β)

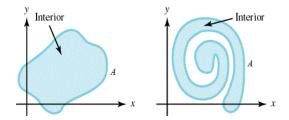
Let A be a subset of \mathbb{R}^n , and assume that $\mathbf{a} \in A$. Then we say that \mathbf{a} is an interior point of A if there is an open *n*-ball with center at \mathbf{a} , all of whose points belong to A.



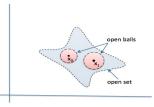
- Point *t* is an interior point.
- Point q is an interior point.
- Point *r* is not an interior point.
- Point *p* is not an interior point.



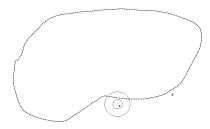
Let A be a subset of \mathbb{R}^n . The set of all interior points of A is called the interior of A and it is denoted by *int* A or A^0 .



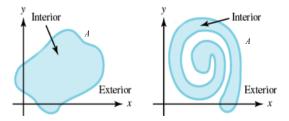
A set A in \mathbb{R}^n is called open if all its points are interior points. In other words, A is open if and only if A = int A.



Let A be a subset of \mathbb{R}^n . A point **x** is said to be exterior to a set A in \mathbb{R}^n if there is an *n*-ball **B**(**x**) containing no points of A.

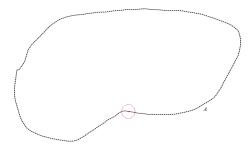


Let A be a subset of \mathbb{R}^n . The set of all points in \mathbb{R}^n exterior to A is called the exterior of A and it is denoted by *ext* A.



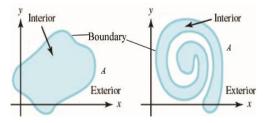
A boundary point

Let A be a subset of \mathbb{R}^n . A point which is neither exterior to A nor an interior point of A is called a boundary point of A.

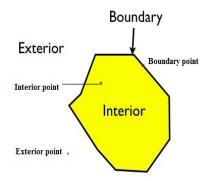


The boundary

Let A be a subset of \mathbb{R}^n . The set of all boundary points of A is called the boundary of A and it is denoted by ∂A .



Summary



How to show a given set is an open set?

- **1** Any $\mathbf{x} \in \mathbb{S}$ is an interior point.
- 2 Any $\mathbf{x} \in \mathbb{S}$ is neither a boundary nor an exterior point.
- **3** $\$ is open \Leftrightarrow $\$ is closed.

Let A_1 and A_2 are subset of \mathbb{R} and both are open. Then show that the Cartesian product $A_1 \times A_2$ in \mathbb{R}^2 defined by,

$$A_1 \times A_2 = \{(a_1, a_2) | a_1 \in A_1 \text{ and } a_2 \in A_2\},\$$

is also open.

- To prove this, choose any point $\mathbf{a} = (a_1, a_2)$ in $A_1 \times A_2$.
- We must show that **a** is an interior point of $A_1 \times A_2$.
- A_1 is open in $\mathbb{R} \Rightarrow$ There is a 1-ball $\mathbf{B}(a_1; r_1)$ in A_1 .
- A_2 is open in $\mathbb{R} \Rightarrow$ There is a 1-ball $\mathbf{B}(a_2; r_2)$ in A_2 .
- Let $r = min\{r_1, r_2\}$.
- We can easily show that the 2-ball $B(a; r) \subseteq A_1 \times A_2$.

Example Solution⇒Cont...

- In fact, if $\mathbf{x} = (x_1, x_2)$ is any point of $\mathbf{B}(\mathbf{a}; r)$ then $\|\mathbf{x} \mathbf{a}\| < r$.
- So $|x_1 a_1| < r_1 \Rightarrow x_1 \in \mathbf{B}(a_1; r_1).$
- And $|x_2 a_2| < r_2 \Rightarrow x_2 \in \mathbf{B}(a_2; r_2).$
- Therefore $x_1 \in A_1$ and $x_2 \in A_2$, so $(x_1, x_2) \in A_1 \times A_2$.
- This proves that every point of B(a; r) is in $A_1 \times A_2$.
- Therefore every point of $A_1 \times A_2$ is an interior point.
- So, $A_1 \times A_2$ is open.

Thank you !