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Maxima, Minima, and Saddle Points
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Introduction

A scientist or engineer will be interested in the ups and downs
of a function, its maximum and minimum values, its turning
points.

For instance, locating extreme values is the basic objective of
optimization.

In the simplest case, an optimization problem consists of
maximizing or minimizing a real function by systematically
choosing input values from within an allowed set and
computing the value of the function.
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Introduction
Cont...

Drawing a graph of a function using a computer graph
plotting package will reveal behavior of the function.

But if we want to know the precise location of maximum and
minimum points, we need to turn to algebra and differential
calculus.

In this Chapter we look at how we can find maximum and
minimum points in this way.
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Chapter 12
Section 12.1

Single Variable Functions
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Local maximum and local minimum

The local maximum and local minimum (plural: maxima
and minima) of a function, are the largest and smallest value
that the function takes at a point within a given interval.

It may not be the minimum or maximum for the whole
function, but locally it is.
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Local maximum and local minimum
Local maximum

To define a local maximum, we need to consider an interval.

Then a local maximum is the point where, the height of the
function at a is greater than (or equal to) the height
anywhere else in that interval.

Or, more briefly:

f(a) ≥ f(x) for all x in the interval.
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Local maximum and local minimum
Local minimum

To define a local minimum, we need to consider an interval.

Then a local minimum is the point where, the height of the
function at a is lowest than (or equal to) the height anywhere
else in that interval.

Or more briefly:

f(a) ≤ f(x) for all x in the interval.
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Global (or absolute) maximum and minimum

The maximum or minimum over the entire function is called
an absolute or global maximum or minimum.

There is only one global maximum.

And also there is only one global minimum.

But there can be more than one local maximum or minimum.
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How do we classify stationary points?

Extrema of a univariate function f can be found by the following
well-known method:

1 Find the stationary points of f , i.e., points a with f ′(a) = 0.

2 Compute the second derivative f ′′ and check its sign at these
critical points.

If f ′′(a) > 0, then a is a local minimum.

If f ′′(a) < 0, then a is a local maximum.

If f ′′(a) = 0, then we need higher order derivatives at a for a
decision.
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How do we classify stationary points?
Example

Find the stationary points of f (x) = x4 − 3x2 + 2 and determine
the nature of these points.
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Chapter 12
Section 12.2

Multivariable Functions
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What is meant by a multivariable function?

A multivariable function is a function with several variables.

Multivariable functions which take more parameters and give
one single scalar value as the result.

These functions are also known as scalar fields.

The concepts of maxima and minima can be introduced for
arbitrary scalar fields defined on subset of Rn.
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Stationary point
Definition

Assume f is differentiable at a. If ▽f (a) = 0 the point a is
called a stationary point of f .

In other words, at a stationary point all first-order partial
derivatives D1f (a), ...,Dnf (a) must be zero.
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Absolute and relative maximum
Definition

A scalar field f is said to have an absolute maximum at a point a
of a set S in R

n if

f (x) ≤ f (a) (1)

for all x in S. The number f (a) is called the absolute maximum
value of f on S.

The function f is said to have a relative maximum at a if the
inequality in (1) is satisfied for every x in some n-ball B(a) lying in
S.
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Absolute and relative minimum
Definition

A scalar field f is said to have an absolute minimum at a point a
of a set S in R

n if

f (x) ≥ f (a) (2)

for all x in S. The number f (a) is called the absolute minimum
value of f on S.

The function f is said to have a relative minimum at a if the
inequality in (2) is satisfied for every x in some n-ball B(a) lying in
S.
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Extremum
Definition

A number which is either a relative maximum or a relative
minimum of f is called an extremum of f .
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Saddle point

A saddle point is a point in the domain of a function that is
a stationary point but not a local extremum.

On the other hand, it is easy to find examples in which the
vanishing of all partial derivatives at a does not necessarily
imply an extremum at a.
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Saddle point
Definition

Assume f is differentiable at a. If ▽f (a) = 0 the point a is called a
stationary point of f . A stationary point is called a saddle point if
every n-ball B(a) contains points x such that f (x) < f (a) and
other points such that f (x) > f (a).
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Remark

This situation is somewhat analogous to the one-dimensional
case in which stationary points of a function are classified as
maxima, minima, and point of inflection.

The following examples illustrate several types of stationary
points.

In each case the stationary point in question is at the origin.
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Example 1
Relative maximum

Consider the surface z = f (x , y) = 2− x2 − y2.

This surface is a paraboloid of revolution. In the vicinity of the
origin it has the shape shown in left side Figure. Its level curves are
circles, some of which are shown in right side Figure. Since
f (x , y) = 2− (x2 + y2) ≤ 2 = f (0, 0) for all (x , y), it follows that
f not only has a relative maximum at (0, 0) but also an absolute
maximum there. Both partial derivatives ∂f /∂x and ∂f /∂y vanish
at the origin.
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Example 2
Relative minimum

Consider the surface z = f (x , y) = x2 + y2.

This example, another paraboloid of revolution, is essentially the
same as Example 1, except that there is a minimum at the origin
rather than a maximum. The appearance of the surface near the
origin is illustrated in left side Figure and some of the level curves
are shown in right side Figure.
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Example 3
Saddle point

Consider the surface z = f (x , y) = xy .

This surface is a hyperbolic paraboloid. Near the origin the surface
is saddle shaped, as shown in left side Figure. Both partial
derivatives ∂f /∂x and ∂f /∂y are zero at the origin but there is
neither a relative maximum nor a relative minimum there.
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Example 3
Saddle point⇒Cont...

In fact, for points (x , y) in the first or third quadrants, x and y
have the same sign, giving us f (x , y) > 0 = f (0, 0), whereas for
points in the second and fourth quadrants x and y have opposite
signs, giving us f (x , y) < 0 = f (0, 0). Therefore, in every
neighborhood of the origin there are points at which the function is
less than f (0, 0) and points at which the function exceeds f (0, 0),
so the origin is a saddle point. The presence of the saddle point is
also revealed by above right side Figure, which shows some of the
level curves near (0,0). These are hyperbolas having the x- and
y -axes asymptotes.
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Characterization of local extrema
Motivative example

Find the stationary points of the function f (x , y) = −x2 − y2 and
determine whether they are local maximum, minimum, or saddle
points.
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Characterization of local extrema
Motivative example⇒Solution

The stationary points are the points where ▽f = 0.

Since ▽f = (−2x ,−2y) the only solution to ▽f = (0, 0) is x = 0
and y = 0.

Since f (x , y)− f (0, 0) ≤ 0 for all (x , y) ∈ R
2, then the point (0, 0)

must be a local maximum of f .
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Characterization of local extrema
Cont...

If a differentiable scalar field f has a stationary point at a, the
nature of the stationary point is determined by the algebraic sign
of the difference f (x)− f (a) for x near a. If x = a+ y, we have
the first-order Taylor formula

f (a+ y)− f (a) = ▽f (a).y + ∥y∥E (a, y),

where E (a, y) → 0 as y → 0.
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Characterization of local extrema
Cont...

At a stationary point, ▽f (a) = 0 and the Taylor formula becomes

f (a+ y)− f (a) = ∥y∥E (a, y).

To determine the algebraic sign of f (a+ y)− f (a) we need more
information about the error term ∥y∥E (a, y).
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Characterization of local extrema
Cont...

The next theorem shows that if f has continuous second-order
partial derivatives at a, the error term is equal to a quadratic form,

1

2

n∑
i=1

n∑
j=1

Dij f (a)yiyj

plus a term of smaller order than ∥y∥2.
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Characterization of local extrema
Cont...

The coefficient of the quadratic form are the second-order partial
derivatives Dij f = Di (Dj f ), evaluated at a. The n × n matrix of
second-order derivatives Dij f (x) is called the Hessian matrix and
is denoted by H(x). Thus we have

H(x) = [Dij f (x)]
n
i ,j=1

whenever the derivatives exists.
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Characterization of local extrema
Cont...

The quadratic form can be written more simply in matrix notation
as follows:

n∑
i=1

n∑
j=1

Dij f (a)yiyj = yH(a)yT ,

where y = (y1, ..., yn) is considered as a 1× n row matrix, and yT

is its transpose, an n × 1 column matrix.

When the partial derivatives Dij f are continuous we have
Dij f = Dji f and the matrix H(a) is symmetric.

Taylor formula, giving a quadratic approximation to
f (a+ y)− f (a), now takes the following form.
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Characterization of local extrema
Theorem 12.1 (Second-order Taylor formula for scalar fields)

Let f be a scalar field with continuous second-order partial
derivatives Dij f in an n-ball B(a). Then for all y in R

n such that
a+ y ∈ B(a) we have

f (a+ y)− f (a) = ▽f (a).y + 1

2!
yH(a+ cy)yt , where 0 < c < 1. (3)

This can also be written in the form

f (a+ y)− f (a) = ▽f (a).y + 1

2!
yH(a)yt + ∥y∥2E2(a, y), (4)

where E2(a, y) → 0 as y → 0.

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 32/80



Characterization of local extrema
The nature of a stationary point determined by the eigenvalues

At a stationary point we have ▽f (a) = 0, so the Taylor formula in
Equation (4) becomes

f (a+ y)− f (a) =
1

2
yH(a)yt + ∥y∥2E2(a+ y).

Since the error term ∥y∥2E2(a+ y) trends to zero faster than ∥y∥2,
it seems reasonable to expect that for small y the algebraic sign of
f (a+ y)− f (a) is the same as that of the quadratic form yH(a)yt ;
hence the nature of the stationary point should be determined by
the algebraic sign of the quadratic form.
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Characterization of local extrema
Theorem 12.2

Let A = [aij ] be an n × n real symmetric matrix, and let

Q(y) = yAyt =
n∑

i=1

n∑
j=1

aijyiyj .

Then we have

(a) Q(y) > 0 for all y ̸= 0 if and only if all the eigenvalues of A
are positive.

(b) Q(y) < 0 for all y ̸= 0 if and only if all the eigenvalues of A
are negative.

In case (a), the quadratic form is called positive definite; in case of
(b) it is called negative definite.
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Characterization of local extrema
Theorem 12.3

Let f be a scalar field with continuous second-order partial
derivatives Dij f in an n-ball B(a), and let H(a) denote the Hessian
matrix at a stationary point a. Then we have

(a) If all the eigenvalues of H(a) are positive, f has a relative
minimum at a.

(b) If all the eigenvalues of H(a) are negative, f has a relative
maximum at a.

(c) If H(a) has both positive and negative eigenvalues, then f has
a saddle point a.
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Characterization of local extrema
Theorem 12.3⇒Remark

If all the eigenvalues of H(a) are zero, Theorem (12.3) gives
no information concerning the stationary point.

Test involving higher order derivatives can be used to treat
such examples, but we shall not discuss them here.
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Characterization of local extrema
Second-derivative test for extrema of functions of two variables

In the case n = 2 the nature of the stationary point can be
determined by the algebraic sign of the second derivative D1,1f (a)
and the determinant of the Hessian matrix.
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Characterization of local extrema
Second-derivative test for extrema of functions of two variables⇒Theorem 12.4

Let a be a stationary point of a scalar field f (x1, x2) with
continuous second-order partial derivatives in a 2-ball B(a). Let

A = D1,1f (a), B = D1,2f (a), C = D2,2f (a)

and let

△ = detH(a) = det

[
A B
B C

]
= AC − B2.

Then we have

(a) If △ < 0, f has a saddle point at a.

(b) If △ > 0 and A > 0, f has a relative minimum at a.

(c) If △ > 0 and A < 0, f has a relative maximum at a.

(d) If △ = 0, the test is inconclusive.
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Example 1

Find the stationary points of the function f (x , y) = −x2 − y2 and
determine whether they are local maximum, minimum, or saddle
points.
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Example 1
Solution

The stationary points are the points where ▽f = 0.

Since ▽f = (−2x ,−2y) the only solution to ▽f = (0, 0) is x = 0
and y = 0.

A = D1,1f (0, 0) = −2, B = D1,2f (0, 0) = 0, C = D2,2f (0, 0) = −2

and let

△ = det

[
A B
B C

]
= AC − B2.

△|(0,0) = (−2)(−2)− 02 = 4 > 0.

Since △|(0,0) > 0 and A < 0, f has a relative maximum at (0, 0).
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Example 2

Find the local extrema and saddle points of the function

f (x , y) =
1

3
x3 − 3x2 +

y2

4
+ xy + 13x − y + 2.
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Example 2
Solution

We first find the critical points for this function. This gives us:

fx(x , y) = x2 − 6x + y + 13 = 0

fy (x , y) =
y

2
+ x − 1 = 0

From the second equation we find y = 2− 2x .

Substituting this into the first equation we find
x2 − 8x + 15 = (x − 3)(x − 5) = 0.

Thus, x = 3 and x = 5 so that the critical points are (3, -4) and
(5, -8).
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Example 2
Solution⇒Cont...

On the other hand, we have fxx(x , y) = 2x − 6, fyy (x , y) =
1

2
and

fxy (x , y) = 1.

Let us consider the critical point (3, -4).

We have A = fxx(3,−4) = 2(3)− 6 = 0, C = fyy (3,−4) =
1

2
and

B = fxy (3,−4) = 1.

△ = det

[
A B
B C

]
= AC − B2.

△|(3,−4) = 0× 1

2
− 12 = −1.

Since △|(3,−4) = −1 < 0 so (3,-4) is a saddle point.
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Example 2
Solution⇒Cont...

Let us consider the critical point (5,-8).

We have A = fxx(5,−8) = 2(5)− 6 = 4, C = fyy (5,−8) =
1

2
and

B = fxy (5,−8) = 1.

△ = det

[
A B
B C

]
= AC − B2.

△|(5,−8) = 4× 1

2
− 12 = 1.

Since △|(5,−8) = 1 > 0, A = fxx(5,−8) = 4 > 0 so that (5, -8) is a
local minimum.
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Example 2
Solution⇒Cont...

Figure: f (x , y) =
1

3
x3 − 3x2 +

y2

4
+ xy + 13x − y + 2

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 45/80



Example 3

Find the local extrema and saddle points of the function

f (x , y) = x3 + y5 − 3x − 10y + 4.
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Example 3
Solution

The partial derivatives give

fx(x , y) = 3x2 − 3 = 0

fy (x , y) = 5y4 − 10 = 0

Solving each equation we find x = ±1 and y = ± 4
√
2.

Thus, the critical points are (1, 4
√
2), (1,− 4

√
2), (−1, 4

√
2) and

(−1,− 4
√
2).

The discriminant is

△ = det

[
A B
B C

]
= AC − B2 = −120xy3.
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Example 3
Solution⇒Cont...

Since △|(1, 4√2) = 120 4
√
8 > 0 and A = D1,1f (1,

4
√
2) = 6 > 0,

(1, 4
√
2) is a local minimum.

Since △|(1,− 4√2) = −120 4
√
8 < 0, (1,− 4

√
2) is a saddle point.

Since △|(−1, 4
√
2) = −120 4

√
8 < 0, (−1, 4

√
2) is a saddle point.

Since △|(−1,− 4√2) = 120 4
√
8 > 0 and

A = D1,1f (−1,− 4
√
2) = −6 < 0, (−1,− 4

√
2) is a local maximum.
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Remark

The second derivative test discussed above, did not cover the
case △ = 0.

As illustrated in the example below, the second derivative test
is inconclusive in this case.

That is one cannot classify the critical point.

It can be either a local maximum, a local minimum, a saddle
point or none of these.
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Example 4

Let f (x , y) = x4 + y4, g(x , y) = −x4 − y4, and h(x , y) = x4 − y4.
Show that △|(0,0) = 0 for each function. Classify the critical point
(0, 0) for each function.
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Example 4
Solution⇒f (x , y) = x4 + y 4

Note that fx(0, 0) = fy (0, 0) = 0 so that f (x , y) has a critical point
at (0, 0).

Since fxx(x , y) = 12x2, fyy (x , y) = 12y2 and fxy (x , y) = 0, we have

△|(0,0) = det

[
A B
B C

]
= AC − B2 = 0.

But the smallest value of f (x , y) occurs at (0, 0) so that f (x , y)
has a local and global minimum at (0, 0) with △|(0,0).
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Example 4
Solution⇒g(x , y) = −x4 − y 4

Similarly, gx(0, 0) = gy (0, 0) = 0 so that g(x , y) has a critical
point at (0, 0).

Since gxx(x , y) = −12x2, gyy (x , y) = −12y2 and gxy (x , y) = 0, we
have

△|(0,0) = det

[
A B
B C

]
= AC − B2 = 0.
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Example 4
Solution⇒g(x , y) = −x4 − y 4⇒Cont...

But the smallest value of f (x , y) occurs at (0, 0) so that f (x , y)
has a local and global maximum at (0, 0) with △|(0,0).

Since g(x , y) ≤ 0, the largest value occurs at (0, 0).

That is, g has a local and global maximum at (0, 0) with △|(0,0).
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Example 4
Solution⇒ h(x , y) = x4 − y 4

Finally hx(0, 0) = hy (0, 0) = 0 so that h(x , y) has a critical point
at (0, 0).

Since hxx(x , y) = 12x2, hyy (x , y) = −12y2 and hxy (x , y) = 0, we
have

△|(0,0) = det

[
A B
B C

]
= AC − B2 = 0.

However, h(0, 0) = 0, z = h(x , 0) = x4 > 0
andz = h(0, y) = −y4 < 0. Hence, (0, 0) is a saddle point with
△|(0,0).
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Chapter 12
Section 12.3

Extrema with Constraints
Lagrange’s Multipliers
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Why do we need Lagrange multipliers?

An optimization problem aims to maximize or minimize a
given function.

A constrained optimization problem is a kind of optimization
problem in which the solution has to satisfy the constraints
imposed on the problem to be acceptable.

Lagrange multipliers are a mathematical tool for constrained
optimization of differentiable functions.
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Applications of constrained optimizations

It’s usually not enough to ask, ”How do I minimize the
material needed to make a box?” The answer to that is clearly
”Make a really, really small box!”. You need to ask, ”How do
I minimize the material while making sure that the volume of
the box is 500cm3?

How do I maximize my factory’s profit given that I only have
Rs. 25,000 to invest?
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The Lagrange function

Consider the optimization problem:
maximize f (x , y)
subject to g(x , y) = c .

We need both f and g to have continuous first partial derivatives.
We introduce a new variable (λ) called a Lagrange multiplier and
study the Lagrange function (or Lagrangian) defined by

L(x , y , λ) = f (x , y)− λ(g(x , y)− c),

where the λ term may be either added or subtracted.
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The Lagrange function
Cont...

If f (x0, y0) is a maximum of f (x , y) for the original constrained
problem, then there exists λ0 such that (x0, y0, λ0) is a stationary
point for the Lagrange function (stationary points are those points
where the partial derivatives of L are zero, i.e ▽L = 0).

However, not all stationary points yield a solution of the original
problem.
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Example 1

The function f (x , y) which describes a paraboloid and is defined as

f (x , y) = 2− x2 − 2y2. (5)

The constraint g(x , y) is an unit circle as given below

g(x , y) = x2 + y2 − 1 = 0. (6)

Find the maximum and minimum of f (x , y) under the constraint
g(x , y).
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Example 1
Method 1

Solving (6) we get,

x2 = 1− y2

Substituting this in (5) we get,

f (x , y) = 1− y2

From the above equation, we can deduce that f (x , y) has
maximum at y = 0 which results in f (x , y) = 1 and x = ±1.

Similarly, we can deduce that f (x , y) has minimum at y = ±1
which results in f (x , y) = 0 and x = 0.
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Example 1
Method 2

The Lagrange function is

L(x , y , λ) = f (x , y)− λ(g(x , y)− c)

L(x , y , λ) = 2− x2 − 2y2 − λ(x2 + y2 − 1).

To determine solutions we have to consider

▽L(x , y , λ) = 0 ⇒ ∂

∂x
L(x , y , λ) = −2x − 2λx = 0 (7)

⇒ ∂

∂y
L(x , y , λ) = −4y − 2λy = 0 (8)

⇒ ∂

∂λ
L(x , y , λ) = −x2 − y2 + 1 = 0 (9)

We now have 3 equations and 3 unknowns.

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 62/80



Example 1
Method 2⇒Cont...

Solving (7), we get λ = −1.

Using this in (8), we get y = 0.

Using that result in (9), we get x = ±1.

Using these results in (5), we get f (x , y) = 1. We’ve got the
maximum.
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Example 1
Method 2⇒Cont...

Solving (8), we get λ = −2.

Using this in (7), we get x = 0.

Using that result in (9), we get y = ±1.

Using these results in (5), we get f (x , y) = 0. We’ve got the
minimum.
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Example 2

A person needs to acquire 420 feet of fencing and decides to use it
to start a kennel by building 5 identical adjacent rectangular runs
(see diagram below). Find the dimensions of each run that
maximizes its area.
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Example 2
Solution

We let A denote the area of a run, and we let x , y be the
dimensions of each run. Clearly, there are to be 10 sections of
fence corresponding to widths x and 6 sections of fence
corresponding to lengths y . Thus, we desire to maximize A = xy
subject to the constraint

10x + 6y = 420.

Since x and y cannot be negative, we need only find absolute
extrema for x in [0, 42].
The Lagrangian for the problem is

L(x , y , λ) = xy − λ(10x + 6y − 420).
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Example 2
Solution⇒Cont...

▽L(x , y , λ) = 0 ⇒ ∂

∂x
L(x , y , λ) = y − 10λ = 0

⇒ ∂

∂y
L(x , y , λ) = x − 6λ = 0

⇒ ∂

∂λ
L(x , y , λ) = −10x − 6y + 420 = 0

Thus, the critical points of L(x , y , λ) satisfy y = 10λ, x = 6λ,
10x + 6y = 420.
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Example 2
Solution⇒Cont...

The first two equations parameterize the extrema in the parameter
λ, which is why we eliminate λ to obtain λ = y/10 and λ = x/6.
Thus,

y

10
=

x

6
,

y =
10x

6
=

5x

3
.

Substituting into the constraint thus yields

10x + 6

(
5x

3

)
= 420,

x = 21 feet.
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Example 2
Solution⇒Cont...

Moreover, we also have y = 5× (21/3) = 35 feet.

At x = 0 and x = 42, the area is 0, while at the critical point (21,
35), the area is 735 square feet.

Thus, the maximum occurs when x = 21 feet and y = 35 feet.
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Remark

If possible, a good approach to eliminate λ in a system of
equations of the form

fx = λgx , fy = λgy

is that of dividing the former by the latter to obtain

fx
fy

=
λgx
λgy

⇒ fx
fy

=
gx
gy

and then cross-multiplying to obtain fxgy = fygx . However, this
method is not possible if one or more of the factors is zero.
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Example 3

A manufacturer’s production is modeled by the Cobb-Douglas
function

f (x , y) = 100x3/4y1/4,

where x represents the units of labor and y represents the units of
capital. Each labor unit costs $200 and each capital unit costs
$250. The total expenses for labor and capital cannot exceed
$50,000. Find the maximum production level.
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Example 3
Solution

The constraint in this problem comes from the sentence: The total
expenses for labor and capital cannot exceed $50,000 which can be
translated as

200x + 250y = 50, 000

We write this as a Lagrange multiplier problem, i.e. find the
critical values of

L(x , y , λ) = 100x3/4y1/4 − λ(200x + 250y − 50, 000).
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Example 3
Solution⇒Cont...

Set the partial derivatives of the function equal to zero

∂

∂x
L(x , y , λ) = 75x−1/4y1/4 − 200λ = 0

∂

∂y
L(x , y , λ) = 25x3/4y−3/4 − 250λ = 0

∂

∂λ
L(x , y , λ) = −200x − 250y + 50, 000 = 0

Solve this system of three equations and three unknowns. To begin
solve for λ in the first equation, substitute it in to the second
equation to solve for x and substitute that into the final equation
to solve for y .
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Multiple constraints

To find the extrema of a function f (x , y , z) subject to two
constraints,

g(x , y , z) = k, h(x , y , z) = l

we define a function of the 3 variables x , y and z and the
Lagrange multipliers λ and µ by

L(x , y , z , λ, µ) = f (x , y , z)− λg1(x , y , z)− µh1(x , y , z)

where g1(x , y , z) = g(x , y , z)− k and where
h1(x , y , z) = h(x , y , z)− l .

As before, the goal is to determine the critical points of the
Lagrangian.
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Example

Many airlines require that carry-on luggage have a linear distance
(sum of length, width, height) of no more than 45 inches with an
additional requirement of being able to slide under the seat in front
of you. If we assume that the carry-on is to have (at least roughly)
the shape of a rectangular box and one dimension is no more than
half of one of the other dimensions (to insure ”slide under seat” is
possible), then what dimensions of the carryon lead to maximum
storage (i.e., maximum volume)?
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Example
Solution

If we let x , y and z denote length, width, and height, respectively,
then our goal is to maximize the volume V (x , y , z) subject to the
constraints

x + y + z = 45 and y = 2x

(i.e., x is 1/2 of y).

Thus, g1(x , y , z) = x + y + z − 45 and h1(x , y , z) = y − 2x leads
to a Lagrangian of the form

L(x , y , z , λ, µ) = f (x , y , z)− λg1(x , y , z)− µh1(x , y , z)

= xyz − λ(x + y + z − 45)− µ(y − 2x)
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Example
Solution⇒Cont...

The partial derivatives of L are

▽L(x , y , z , λ) = 0 ⇒ ∂

∂x
L(x , y , z , λ) = yz − λ− µ(−2) = 0

⇒ ∂

∂y
L(x , y , z , λ) = xz − λ− µ = 0

⇒ ∂

∂z
L(x , y , z , λ) = xy − λ = 0

⇒ ∂

∂λ
L(x , y , z , λ) = x + y + z − 45 = 0

⇒ ∂

∂µ
L(x , y , z , λ) = y − 2x = 0
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Example
Solution⇒Cont...

The critical points thus must satisfy

yz = λ− 2µ, xz = λ+ µ, xy = λ

along with the constraints. Combining the last two equations
yields xz = xy + µ, so that the first equation becomes

yz = xy − 2(xz − xy) or yz = 3xy − 2xz

Since y = 2x this becomes

2xz = 6x2 − 2xz or 4xz = 6x2

Since x = 0 leads to a zero volume, we must have 2z = 3x or
z = 1.5x .
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Example
Solution⇒Cont...

Substituting into the first constraint yields

x + 2x + 1.5x = 45

which is 4.5x = 45 or x = 10.

If x = 10 then y = 2x = 20 and z = 1.5x = 15, so that the critical
point is (10, 20, 15).

Since x , y , and z must all be in [0, 45], we are seeking the extrema
of the volume over a closed set (in particular, the closed box
[0, 45]× [0, 45]× [0, 45]) and the volume is zero on the boundary.

Thus, the maximum volume must occur, and the only place left for
it to occur is at the critical point (10, 20, 15).
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Thank you!
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