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Chapter 11

Derivatives of Functions Defined
Implicitly
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Explicit function

A function in which the dependent variable can be written
explicitly in terms of the independent variable.

Eg:

(a) y=x*+9

(b) y=v4—x
(c) y = logy x
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Implicit function

m A function or relation in which the dependent variable is not
isolated on one side of the equation.

m Some implicit functions can be written explicitly.

m Unfortunately, not every equation involving x and y can be
solved explicitly for y.

Eg:

(a) x> +y2=4

(b) y —x?=13

(c) y>+x*y" —2x*y +x>=0
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Implicit differentiation of functions of one variable

m We have seen how to differentiate functions of the form
y = f(x).

m We also want to be able to differentiate functions that either
can't be written explicitly in terms of x or the resulting
function is too complicated to deal with.

m To do this we use implicit differentiation.

m Implicit differentiation is nothing more than a special case of
the well-known chain rule for derivatives.
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Implicit differentiation of functions of one variable
Example

d
(a) Find d—i for x> + y?> =4

(b) Find % for x?y + y3x = x3y3
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Implicit representation of the surface in 3-space

m Some surface in 3-space are described by Cartesian equations
of the form

F(x,y,z) =0.

m An equation like this is said to provide an implicit
representation of the surface.

m For example, the equation x? 4 y? + z%> — 1 = 0 represents the
surface of a unit sphere center at the origin.
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Implicit representation of the surface in 3-space
Cont...

m Sometimes it is possible to solve the equation F(x,y,z) =0
for one of the variables in terms of the other two, say for z in
terms of x and y.

m This leads to one or more equations of the form
z = f(x,y).
m For the sphere we have two solution,
z= m and z = —m,

one representing the upper hemisphere, the other the lower
hemisphere.
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Implicit differentiation of functions of two variables

m In the general case it may not be an easy matter to obtain an
explicit formula for z in terms of x and y.

m For example, there is no easy method for solving for z in the
equation y2 + xz + z°> — e — 4 = 0.

m Nevertheless, a judicious use of the chain rule makes it
possible to deduce various properties of the partial derivatives
Jf /0x and Of /0y without an explicit knowledge of f(x,y).

m The procedure is described in this Chapter.
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Implicit differentiation of functions of two variables
Cont...

m We assume that there is a function f(x, y) such that

Fix,y,f(x,y)] =0 (1)

for all (x,y) in some open set S, although we may not have
explicit formula for calculating f(x, y).

m We describe this by saying that the equation F(x,y,z) =0
defines z implicitly as a function of x and y, and we write

z=f(x,y).
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Implicit differentiation of functions of two variables
Cont...

m Now we introduce an auxiliary function g defined on S as
follows:

g(x,y) = Flx,y, f(x,y)l.

m Equation (1) states that g(x,y) =0 on S; hence the partial
derivatives 0g/dx and dg/dy are also 0 on S.
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Implicit differentiation of functions of two variables
Cont...

m But we can also compute these partial derivatives by the chain
rule.

m To do this we write
g(va) - F[ul(Xay)a UZ(X,Y)7 U3(Xay)]7

where ui(x,y) = x, u2(x,y) =y, and u3(x,y) = f(x,y).

Department of Mathematics University of Ruhuna — Real Analysis [II(MAT3123) 12/43



Implicit differentiation of functions of two variables
Cont...

The chain rule gives us the formulas

og oup Oun ous
=DiFL + DyF=2 4 DsF= 2
ax Mo TN T 5

and
og ouy Ous ous
2% = DiF D,F DsF <=2
Dy 1 8y—i— > 8y+ 3 Dy

where each partial derivative Dy F is to be evaluated at
(x, ¥, f(x,¥)).
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Implicit differentiation of functions of two variables
Cont...

Since we have

ox L ox 0 Bx  ox and 5> Ox =0,
the first of the foregoing equations becomes

DiF + D3F? =0.

Solving this for Of /Ox we obtain

gi_DlF[X,y,f(X,_}/)
Ox B D3F[X7y7 f(va)]

at those points at which D3F[x,y, f(x,y)] # 0.
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Implicit differentiation of functions of two variables
Cont...

By a similar arguments we obtain a corresponding formula for
of /y:

g:_D2F[X7y7f(X7)/) (3)
ay D3F[X7y7 f(Xu.y)]

at those points at which D3F([x,y, f(x,y)] # 0.
These formulas are usually written more briefly as follows:

of  0F/0x
ox  OF/oz
of  OF/dy
dy — OF/oz
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Example

Assume that the equation y? 4+ xz + z> — e — ¢ = 0 defines z as a
function of x and y, say z = f(x,y). Find a value of the constant
¢ such that (0, e) = 2, and compute the partial derivatives Of /Ox
and Of /Oy at the point (x, y) = (0, e).
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Example
Solution

When x =0, y = e, and z = 2, the equation becomes

e’ +4 — e?> — ¢ =0, and this is satisfied by ¢ = 4. Let

F(x,y,z) = y? + xz + z> — € — 4. From (2) and (3) we have
of z of 2y

Ox  x+42z—e” dy  x+2z—e*

When x =0,y = e, and z = 2 we find 9f /0x = 2/(e? — 4) and
Of |0y = 2e/(e? — 4).

Note that we were able to compute the partial derivatives Of /0x
and Of /Qy using only the value of f(x, y) at the single point (0, e).
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Theorem (11.1)

Implicit differentiation of functions of more than two variables

Let F be a scalar field differentiable on an open set T in R".
Assume that the equation

F(x1,...;xn) =0
defines x, implicitly as a differentiable function of xi, ..., x,_1, say
Xp = (X1, oy Xn—1),

for all points (x1, ..., X,_1) in some open set $ in R"~1. Then for
each k =1,2,...,n — 1 the partial derivative D, f is given by the
formula

Dif = — 4
8 D,.F (4)

at those points at which D,F # 0. The partial derivatives Dy F
and D,F which appear in (4) are to be evaluated at the point
(X1, X2y «ees Xn—1, [ (X1, ooy Xn—1))-
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Two surfaces having implicit representations

m Suppose we have two surfaces with the following implicit
representations:

F(x,y,z) =0, G(x,y,z)=0. (5)

m If these surfaces intersects along a curve C, it may be possible
to obtain a parametric representation of C by solving the two
equations in (5) simultaneously for two of the variables in
term of the third, say for x and y in terms of z.
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Two surfaces having implicit representations
Cont...

m Let us suppose that it is possible to solve for x and y and that
solutions are given by the equations

for all z in some open interval (a, b).

m Then when x and y are replaced by X(z) and Y(z)
respectively, the two equations in (5) are identically satisfied.

m That is, we can write F[X(z), Y(z),z] =0 and
G[X(z),Y(z),z] =0 for all z in (a, b).
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Two surfaces having implicit representations
Cont...

m Again, by using the chain rule, we can compute the
derivatives X’(z) and Y’(z) without an explicit knowledge of
X(z) and Y(2).

m To do this we introduce new functions f and g by means of
the equations

f(z) = F[X(2), Y(2), z] and g(z) = G[X(z), Y(2), z].
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Two surfaces having implicit representations
Cont...

m Then f(z) = g(z) = 0 for every z in (a, b) and hence the
derivatives f'(z) and g’(z) are also zero on (a, b).

m By the chain rule these derivatives are given by the formula

iy~ OF oF oF

f(z)i 8XX(Z)+ ayy(z)+ 827
0G 0G 0G

g'(z) = axl(z) + a—yY/(z) t 55
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Two surfaces having implicit representations
Cont...

m Since f'(z) and g'(z) are both zero we can determine X’(z)
and Y’(z) by solving the following pair of simultaneous linear

equations:
oF _, oF ., .  OF
ax(z)ﬂLéTyY(Z)——az,
oG , oG, . 0G
aX(z)%—a—yY(z)——az.

m At those points at which the determinant of the system is not
zero, these equations have a unique solution which can be
expressed as follows, using Cramer’s rule:
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Two surfaces having implicit representations

Cont...

OF
0z

0G
0z

ox

0G
155

oF
dy

0G

oF

OF
dy
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dy

OF
ox
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Ox

ox

0G
Ox

OF
0z

0G

0z
OF

oF

Oy

oG
Oy
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Two surfaces having implicit representations
Cont...

m The determinants which appear in (6) are determinants of
Jacobian matrices and are called Jacobian determinants.

m A special notation is often used to denote Jacobian
determinants.

m We write
Ox1 Oxo 1 Oxp
a(f-la' 7fn) — det
8(Xla' 7Xn)
of, 0f, of,
LOx; Oxo ~ Oxp
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Two surfaces having implicit representations
Cont...

In this notation, the formulas in (6) can be expressed more briefly

in the form

_O(F.6)/0y.2)
9(F,G)/0(x,y)

d(F,G)/d(z,x)

X oF. 0oy )

Y'(2) =

(The minus sign has been incorporated into the numerators by
interchanging the columns)
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Two surfaces having implicit representations
Cont...

m The method can be extended to treat more general situations
in which m equations in n variables are given, where n > m
and we solve for m of the variables in terms of the remaining
n — m variables.

m The partial derivatives of the new functions so defined can be
expressed as quotients of the Jacobian determinants,
generalizing (7).
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Example 1

Assume that the equation g(x, y) = 0 determines y as a
differentiable function of x , say y = Y(x) for all x in some open
interval (a, b). Express the derivative Y’(x) in terms of the partial
derivatives of g.
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Example 1

Solution

Let G(x) = g[x, Y(x)] for x in (a, b). Then the equation
g(x,y) = 0 implies G(x) = 0 in (a, b). By the chain rule we have

og g
! o !
G'(x) = —ax.l + oy Y'(x),
from which we obtain
0g/0x
Y'(x)=— 8
(x) g /oy (8)

at those points x in (a, b) at which dg/dy # 0. The partial
derivatives 0g/0x and Og/dy are given by the formulas
0g/0x = Dig[x, Y(x)] and Og/0y = Dag[x, Y (x)].
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Example 2

When y is eliminated from the two equations z = f(x, y) and
g(x,y) =0, the results can be expressed in the form z = h(x).
Express the derivative h'(x) in terms of the partial derivatives of f
and g.
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Example 2

Solution

Let us assume that the equation g(x, y) = 0 may be solved for y
in terms of x and that a solution is given by y = Y/(x) for all x in
some open interval (a, b), Then the function h is given by the

formula
h(x) = f[x, Y(x)] if x € (a, b).

Applying the chain rule we have

of  of _,
= +

H(x) = x 8—yY (x).
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Example 2

Solution=-Cont...

Using Equation (8) of Example 1 we obtain the formula

The partial derivatives on the right are to be evaluated at the
point (x, Y(x)). Note that the numerator can also be expressed as
a Jacobian determinant, giving us

oy O(f,8)/9(x,y)
h(x) = ~ogjoy
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Example 3

The two equations 2x = v?> — u? and y = uv define u and v as

functions of x and y. Find formulas for du/0x, du/dy, Ov/0x,
ov/dy.
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Example 3

Solution

If we hold y fixed and differentiate the two equations in question
with respect to x, remembering that v and v are functions of x
and y, we obtain

ov ou ov ou

2:2v&—2ua and 0:ua+v£.

Solving these simultaneously for du/dx and dv/dx we find

ou u q ov v
— =——— and — = ——.
Ox u? + 2 Ox  u?+v2
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Example 3

Solution=-Cont...

On the other hand, if we hold x fixed and differentiate the two
given equations with respect to y we obtain the equations
ov ou ov ou

0=2v— —2u~ and 1=u— +v—.
V@y uay an u8y+v(9y

Solving these simultaneously we find

Jdu v d ov u
— =——— and —=-——.
dy v+ v? dy  u?+v2
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Example 4

Let u be defined as a function of x and y by means of the equation
u= F(x+ u,yu). 9)

Find Qu/0x and Ou/dy in terms of the partial derivatives of F.
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Example 4

Solution

Suppose that u = g(x,y) for all (x,y) in some open set S.
Substituting g(x, y) for u in the original equation we must have

g(x,y) = Flu(x,y), u2(x, y)l; (10)

where u1(x,y) = x + g(x,y) and wa(x,y) = yg(x,y). Now we
hold y fixed and differentiate both sides of (10) with respect to x,
using the chain rule on the right, to obtain

8g 8u1 au2
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Example 4

Solution=-Cont...

But Ou1/0x = 1+ 0g/0x, and Jup/Ox = yOg/Ox. Hence (11)

becomes
og Jg g
8X—D1F. <1—|—ax>—|—D2F <yax .

Solving this equation for 9g/0x (and writing du/0dx for 0g/0x)
we obtain

du —DiF
Ox  DiF +yDoF —1°
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Example 4

Solution=-Cont...

In a similar way we find

og ouy oup og og
9% _ p,FZ y D,FY2 — piF%8 4 poF (498 .
Dy 1 dy + D> dy 1 8y+ p) <y8y+g(x’y)

This leads to the equation

Ju  —g(x,y)DoF
0y DiF+yDyF —1°

The partial derivatives D1 F and Dy F are to be evaluated at the
point (x + g(x,y), yg(x,y)).
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Example 5

When u is eliminated from the two equations x = v+ v and
y = uv?, we get an equation of the form F(x,y,v) = 0 which
defines v implicitly as a function of x and y, say v = h(x, y).

Prove that

Oh _ h(x,y)
Ox  3h(x,y) —2x

and find a similar formula for 0h/dy.
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Example 5

Solution

Eliminating u from the given two equations, we obtain the relation
xv? —v3 — y=0.
Let F be the function defined by the equation
F(x,y,v)=xv?—v3—y.

The discussion in Chapter (9) is now applicable and we can write

oh  OF/ox d oh  OF /0y

ax _ oFjov " a9y T oFjov (12)

Department of Mathematics University of Ruhuna — Real Analysis [II(MAT3123)

41/43



Example 5

Solution=-Cont...

But OF /Ox = v2, OF /v = 2xv — 3v?, and OF /0y = —1. Hence
the equation becomes

Oh V2
Ox C 2xv — 312
v
C2x —3v
h(x,y)
3h(x,y) — 2x’

Oh -1
dy  2xv—312
1
2xh(x,y) — 3h%(x,y)
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Assignment

Suppose that
x2y?z% + zxsiny =5

defines z as a function of x and y. Then find vz

Ox
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Thank you!
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