Course Specifications for the academic year 2018/2019

Mathematics Level I - Semester I MAT111β: Vector Analysis (30 lecture hrs + 15 tutorial hrs)							
Course		Course Unit Title	Vecto	r Analysis			
Unit number	ΜΑΤ111β	Lectures (hrs.)	30	Pre-	None		
Credits	2	Tutorials (hrs.)	15	requisites	None		
Course Unit Objectives		 The objectives of this course unit are to enable the students to use the basic concepts and three fundamental theorems of vector analysis, Gauss', Green's and Stokes' theorems. to give a sense of usage of the concepts in vector calculus in other fields of the sciences for example, Physics. 					
Learning Ou	itcomes	0	owledge	e of the basic c	ould be able to concepts in vector calculus ncepts to solve prescribed exercises		
Course Cont	tent	 Vector Algebra: Definition of a Vector, Addition and Subtraction, Components, Physical examples. Vector Products: Scalar and Vector products including a brief introduction to determinants, triple products, geometrical applications. Differentiation and Integration of a Vector functions. Vector Analysis: Scalar and Vector fields, grad, div, curl, Manipulation with combinations of these operators acting on combinations of fields. Integral transformations: Line, Surface and Volume integrals, the divergence theorem, conservative and solenoidal fields, Green's theorem, Stokes theorem. General coordinates: Unit vectors in orthogonal curvilinear coordinates, elementary arc length and volume, curl, div, grad in curvilinear coordinates. 					
Methods of t learning	teaching and	Lectures: 30 hrs (2 hrs) Tutorial classes: 15 hrs					
Method of A	ssessment	Continuous assessment End Semester Examina		%			
References		 M.D. Raisinghania, <i>Vector Calculus</i>, S. Chand, 1985. Bourne, D.E. and Kendall, P.C., <i>Vector Analysis</i>, Oldbourne, 1967. Absos Ali Shaikh, <u>Sanjib Kumar Jana</u>, <i>Vector analysis with applications</i>, Alpha Science, 2009. Davis, Harry F. <i>Introduction to Vector Analysis 6th ed</i>, 1991. 					

Mathematics Level I - Semester I

Course	N (A TT 1 1 0 S	Course Unit Title	Differ	rential Equation	ons		
Unit number	MAT112δ	Lectures (hrs.)	22.5	Pre-	GCE(A/L)–Combined		
Credits	1.25	Practical (hrs.)	0 requisites		Mathematics		
Course Unit Objectives		 The objectives of this course unit are to provide students basic knowledge of ordinary differential equations (ODEs) and their solutions analytically understanding of the behaviour of solutions of ODEs using graphical methods experience in solving simultaneous ODEs analytically 					
Learning Ou	ıtcomes	 After successfully completing this course unit students will be able to identify and solve ODEs with different forms graphically represent the solutions of the ODEs solve simultaneous differential equations 					
Course Cont	tent	 Classification of differential equations Solutions of 1st order and 1st degree differential equations, orthogonal trajectories in Cartesian coordinates, use of differential operators solving differential equations, simultaneous differential equations. 					
Methods of t learning	teaching and	Lectures, class discussion, tutorial discussion.					
Method of A	ssessment	Continuous assessment: 20% End Semester Examination:80%					
References		<i>mathematics</i>. S. CRai, Bindhyachal,	r Engineers, H. K. Dass Dass, H. K. <i>Advanced engineering</i> Chand Publishing, 2008. al, Deba Prosad Choudhury, and Herbert I. Freedman. <i>A</i> <i>ary differential equations</i> . CRC Press, 2002.				

MAT1128: Differential Equations (15 lecture hrs + 7 tutorial hrs) -(Credit Value 1.25)

Course Unit	MAT113δ	Course Unit Title Introductory Statistics						
number		Lectures (Hr)		15	Pre- requisites	A/L Combined		
Credits	1.25	Tutorial (Hr)		8		Maths		
Course Ur Objectives		 knowledge in the ability to model and	 ability to model day to day life problems using simple statistical models, and 					
Learning	Outcomes	 On completion of the course unit, students should be able to discuss the fundamentals of probability and various probability rules that measure uncertainty, and describe the characteristics and compute probabilities using both discrete and continuous probability distributions. 						
Course Co	ontent	 and continuous probability distributions. Basic concepts of Probability: Definition of Probability, Conditional Probability and the Independence of events, , The Law of Total Probability and Bayes' Rule, Definition of random variables, Cumulative distribution function, Density functions for discrete random variables and continuous random variables, Expectations, Mean, Variance, standard deviation, Expected value of a function of a random variable, Moments, Central Moments, Moment Generating function. Discrete distributions: Bernoulli and Binomial Distributions, Hypergeometric Distribution, Poisson Distribution, Geometric Distribution. Continuous distributions: Uniform Distribution, Normal Distribution, Exponential and Gamma Distribution. 						
Method of	teaching and	l learning: Lectures,	class discussion,	tutorial d	liscussion.			

Method of Assessment: Continuous assessment: 20% End Semester Examination:80%

References:

- Wackerly, Dennis, William Mendenhall, and Richard L. Scheaffer. *Mathematical statistics with applications*. Sixth Edition, Cengage Learning, 2014.
- Freund, John E., and Ronald E. Walpole. *Mathematical Statistics Englewood Cliffs*. (1980).
- Sahoo, Prasanna. Probability and mathematical statistics, University of Louisville (2013).

MAT1142: Mathematics for Biology (30 lecture hrs) Only for students following Biological Science Stream -(Credit Value 2 - Not counted for the Degree)

Course		Course Unit Title	Math	ematics for Bio	o Science Students			
Unit number	MAT1142	Lectures (hrs.)	30	Pre-	None			
Credits	2	Tutorials (hrs.)	15	– requisites	Trone			
Course Unit Objectives		 The objectives of this course unit are to introduce basic quantitative techniques needed for Life Sciences. to convince the students the importance of Mathematics in pursuing higher studies 						
Learning Ou	utcomes	 On completion of the course unit, students should be able to gain a working knowledge of the basic concepts in Mathematics apply basic Mathematical techniques to solve problems in relevant subjects 						
Course Con	tent	Numbers(Real, Integers, Natural, Rational, Irrational and Complex), Elementary Algebra – Indices, Factorials, Functions, exponentials, logarithms, trigonometry, limit of a function, differentiation – first principles, rules for different functions, chain rule, product rule, quotient rule and integration – different techniques, integration by parts, integration using partial fractions, solving differential equations using separation of variables, exact differential equations, elementary probability and statistics						
Methods of t learning	teaching and	Lectures: 30 hrs (2 hrs per week) Tutorial classes: 15 hrs (1 hr per week)						
Method of A	ssessment	Continuous assessment: 20% End Semester Examination:80%						
References		There is no prescribed book for this course. The students may refer lecture notes and work out exercises therein. Supplementary books are available in the main library for interested students.						

-	MAT	Course Unit Title	Algeb		,	
Course Unit number	121β	Lectures +Tutorial Discussions (hrs.)	45	Pre- requisites	None	
Credits	3	Practical (hrs.)				
Course Unit Objectives		This Course aims to provide students with the knowledge of the principles and properties of elementary set theory, functions, polynomials, determinants; and groups, rings and fields. Students are also expected to gain an appreciation for the applications these basic concept of algebra.				
Learning Outcome	s	 Upon successful completion of this course, students should be able to perform the following: explain the understanding of principles and concept of elementary sets, functions which include domain and range, operations, compositions, and inverses, determinants, polynomials and groups, rings and fields. demonstrate the laws and algebra of sets and properties of sets, functions, polynomials determinants, groups, rings and fields. identify the domain and range of functions and outline the procedure for obtaining inverse and composite functions. outline the procedure for obtaining roots of polynomials and interpret the relationship between roots and the coefficients of the polynomials. apply the concept and principles of sets, functions, determinants, polynomials, groups, rings and fields to solve problems. 				
Course Content		Elementary set theory, relations, mappings and functions, theory of polynomial equations in one variable including the statement of the fundamental theory, Newton's relations between roots, solutions of cubic and biquadratic equations, determinants, solutions of equations using determinants, nth roots of unity, factors of $x^n - a^n$, $x^n + a^n, x^{2n} - 2x^n a^n \cos(nx) + a^{2n}$, elementary group theory, rings and fields, complex theory approach through fields.				
Methods of teachin learning	g and	Lectures, class discussion, tut	orial di	scussion.		
Method of Assessm	ent	Continuous assessment -20% End Semester Examination - 80%				
References		1				

 $Mathematics \ Level \ I \ - \ Semester \ II \\ MAT121\beta \ : \ Algebra \ (30 \ lecture \ hrs + 15 \ tutorial \ hrs) \ - (Credit \ Value \ 2.5)$

- Hall, Henry Sinclair, and Samuel Ratcliffe Knight, Higher algebra. AITBS Publishers, 2009.
- Herstein, Israel N. *Topics in algebra*. John Wiley & Sons, 2006.
- Bhattacharya, Phani Bhushan, and Surender Kumar Jain. *First course in linear algebra*. New Age International, 1983

Course		Module Title		Real	Analysis I (Calculus)			
Unit	MAT122β	Lecturer (Hrs)	30		· · · · · ·			
Number		Tutorials	15	Prerequisites	None			
		Practical (Hrs)	-	<u>^</u>				
Credits	2.5							
Objectives	5	The objectives of this course unit	are					
		• to introduce students to th	e basic	ideas of real an	nalysis with the knowledge of			
		elementary logic, real nun differentiability of functio			es and limits, continuity and			
			ent of	mathematics the	nd rigorously from basic e ability to construct, analyze,			
Learning(Durt a a ma a a	and critique mathematical						
Learning (Jutcomes	On completion of this course unit						
		• identify, apply and manip			-			
		• classify real numbers and						
		discuss analyze converger		i divergence of	sequences of numbers			
		 identify continuity of function 		ations				
		• find limits and derivatives						
					e major theorems associated			
		with real numbers, sequen						
		 prove lemmas and theorem direct applications of thos 						
		<u> </u>						
		Elementary Logic: Propositions, Mathematical Statements, Logical Operators, Connectives, Truth Tables, Tautologies and Contradictions, Logical Equivalence,						
Course Co	ontent	Quantifiers, Order of Quantifiers, Proofs.						
000150 00	intent	The Real Number System: Definition, Algebraic Axioms, Field Axioms, Ordered						
		Fields. Related Theorems, Rational and Irrational Numbers, Upper and Lower Bounds,						
		Least upper bound (sup) and greatest lower bounds (inf) andrelated theorems,						
		completeness Axiom, Induction principle, Inequalities, Functions.						
		Sequences: Introducing sequences, Convergence of sequences and related theorems,						
		Divergent sequences, subsequences and related results, Monotone sequences and						
		Monotone convergence theorems.						
		Limits and Continuity of Functions Limits of Functions, Basic idea and epsilon-delta						
		definition, related theorems, Continuity of functions at a point and in an interval,						
Continuity using epsilon-delta, basic consequences of continuity, Unifor					ontinuity, Uniform continuity			
(optional).								
Differentiability: Differentiable functions, Rules of differentiation, Related the								
Rolle's Theorem, Mean Value Theorems and consequences, Maxima Minim								
Mathad -	Critical points of real valued functions, L'Hospital Rule.							
Method of Teaching and Learning: Lectures, Tutorials and Reading Materials Methods of Assessment: Assessment test 20% End Semester Written Examination 80%								
		II: Assessment test 20% End Semes	aer wr	men Examinati				
Reference		A first course in Mathematical Analysis	Comb	nidaa Univanitaa	Dress 2006			

MAT122β: Calculus (Real Analysis) (30 lecture hrs + 15 tutorial hrs) -(Credit Value 2.5)

- David Brannan, A first course in Mathematical Analysis, Cambridge University Press, 2006.
- Deshpande, J.V., *Mathematical Analysis and Applications (An Introduction)*, Narosha Publishing House, India 2005.
- Apostol, Tom M. Calculus, Volume 1. John Wiley & Sons, 1991.
- Apostol, Tom M. *One-variable calculus, with an introduction to linear algebra*. Second Edition, New York: John Wiley and Sons (1967).

Course Unit number	MAT211β	Course Unit Title	Linear Algebra					
Credits	2.5	Lectures (Hrs)	Tutorial (Hrs)	Independent learning (Hrs)	Pre-requisites			
Notional hours	125	30	15	80	MPM1113			
Objectives		 The objectives of this course unit is to provide students with a good understanding of the concepts and methods of linear algebra. help the students develop the ability to solve problems using linear algebra. connect linear algebra to other fields. develop abstract and critical reasoning by studying logical proofs and the axiomatic methods as applied to linear algebra. 						
Learning	Outcomes	 On successful completion solve systems of equal explain the concepts a solve problems using describe complex logities 	ations using ma and methods of I linear algebra.	atrix algebra liner algebra.				
		Matrices and operations on matrices, Elementary transformations, elementary matrices, row echelon form (REF) and reduced row echelon form (RREF) of a matrix, normal forms, Systems of linear equations and their solutions, Real n-dimensional vector spaces, abstract vector spaces and their axioms, subspaces, linear independence and dependence, bases for vector spaces,						
Course Co	ontent	dimension theorem, dual spaces, Solutions of linear systems using matrix rank,						
		Linear transformations from one vector space to another, kernel and image of a linear transformation and related theorems,						
		Eigenvectors, Eigen values, Cayley-Hamilton theorem and its applications, matrix diagonalization, minimal polynomial.						
Method of teaching and learningTeaching: Lectures, class discussion, tutorial discussion. Independent Learning: preparation for lectures/tutorials (30 hrs), group discussions (10 hrs), homework (25 hrs), referring library books/Internet source (15 hrs)								
Method of Assessmen		Semester End Examination : 100%						
		<u> </u>						
	vid Brannan,	A first course in Mathema ., Mathematical Analysis a	•	•••				

Mathematics Level II - Semester I MAT211β: Linear Algebra (30 lecture hrs + 15 tutorial hrs) -(Credit Value 2.5)

House, India 2005.

- Apostol, Tom M. Calculus, Volume 1. John Wiley & Sons, 1991. •
- Apostol, Tom M. One-variable calculus, with an introduction to linear algebra. Second Edition, • New York: John Wiley and Sons (1967).

Course		Course Unit Title	Real Analysis II					
Unit number	er MAT212 β Lectures (Hr) 30		30	Pre- requisites	MAT112β			
Credits	2.5	Tutorial (Hr)	15					
Objectives	5	 The objectives of this course unit are to provide the students with the understanding of different forms of infinite sequences and series, and their convergences the concept of Riemann Integration of functions 						
Learning	Outcomes	 On completion of the course unit the students will be able to: define series discuss the convergence of sequences and series apply the criteria (root, ratio and integral tests) forestablishing convergence of series and identify series that do not converge find the radius of convergence of a series evaluate definite integrals and find areas under functions using Riemann Integration define the Riemann Integrability of functions to prove related theorems on the properties of Riemann Integrals 						
Course Co	ontent	Alternative series, Co of series of functions Riemann Integration	ion: Partitions and Riemann sums. Upper and lower Necessary and sufficient condition for integrability.					
Method of and learni	0	Lectures, Reading mat	erials, Class discussions, 7	Futorial discussi	ons			
Method of Assessmer		Semester End Written Examination: 100%						
 Malik, Subhash Chandra, and Savita Arora. <i>Mathematical analysis</i>. Age International, 1992. Shanthi Narayan, M.D. Raisinghania , <i>Elements of Real Analysis</i>, S Chand & Co Ltd, 2003. Brannan, David Alexander. <i>A first course in mathematical analysis</i> Cambridge University Press, 2006. 					lysis, S			

MAT212_β: Real Analysis-I (30 lecture hrs + 15 tutorial hrs) -(Credit Value 2.5)

Mathematics Level II - Semester II

Course		Course Unit Title	Number Theory					
Unit number	ΜΑΤ221β	Lectures (Hr)	30	GPA/NGPA	GPA			
Credits	2.5	Tutorials (Hr)	15					
Objective	s	 The objectives of this course unit are to provide students a knowledge about the properties of Integers and Prime numbers how to solve linear Diophantine equations how to solve linear congruences and systems of linear congruences 						
Learning Outcomes After successfully completing this course, students will be a • apply the properties of integers, prime numbers and num functions to solve various types of mathematical problem • solve linear Diophantine equations and apply them in pr • solve linear congruences, systems of linear congruences • practical problems					oblems			
Course Co	ontent	 Properties of Integers″ Numbers Number Theoretic Functions Theory of Congruences Systems of Linear Congruences (Chinese Remainder Theorem) Primitive Roots Quadratic Congruencies The Fermat Last Theorem 						
Method o and learn	f teaching ing	Conducting Lecture and	Tutorial classes					
Method of Assessmen		Mid semester examination – 20% Endsemester examination – 80%						
 References Theory of numbers: a textbook- by Ramachandra, K An introduction to the theory of numbers - by Hardy G.H; Wright Elementary Number Theory- by Burton, David M. Beginning Number Theory – by Robbins, Nerville 								

MAT221_β: Number Theory (30 lecture hrs + 15 tutorial hrs) -(Credit Value 2.5)

Course	ui / inui y 515-11	(15 lecture hrs + 7 tutorial hrs) -(Credit Value 1.25)						
Unit	ΜΑΤ222δ	Course Unit Title		Analysis				
number		Lectures (hrs.)	15	Pre-	Name			
Credits	1.25	Practical (hrs.)		requisites	None			
Course Unit Objectives		 The objectives of this course unit is to introduce students to the basic ideas of functional sequence and functi to develop the theory of functional sequence and functional series from basic principles, giving the student of mathematics the ability to construct, analyse, and critique mathematical proofs in analysis. 						
Learning Ou	itcomes	 Construct, analyse, and critique mathematical proofs in analysis. On completion of the course unit, students should be able to define a function functional sequence and functional series, point wise convergence, uniform convergence. find the limit function and the limit sum. discuss the condition(s) for a functional sequence to be continuous, bounded, differentiable and integral on a respected interval. Taking decision on uniform convergence problems using M_n test function functional sequence. Taking decision on uniform convergence problems using Weierstrass M – test of functional series. 						
Course Cont	ent	 Sequences and series of functions, Point-wise convergence of sequence of functions, Uniform convergence of sequence of functions, Convergence and Uniform convergence of series of functions, Integration and differentiation of series of functions. 						
Methods of t learning	eaching and	Through lectures and tutorial discussions.						
Method of A	ssessment	Continuous assessment20%End Semester Examination80%						
References		Age International, 1	ayan, M.D. Raisinghania, Elements of Real Analysis, S Chand					

MAT222δ: Real Analysis-II (15 lecture hrs + 7 tutorial hrs) -(Credit Value 1.25)

Course		Course Unit Title	Geon	netry				
Unit number	ΜΑΤ224δ	Lectures (Hr)	15	Pre-				
Credits	1.25	Tutorial (Hr)	8	- requisites	A/L Combined Maths			
Course Unit Objectives		The objectives of this course unit are to provide the students the concepts and properties of 2-D and 3-D Geometry.						
Learning Ou	itcomes	 On completion of the course unit the students will be able to: solve problems in 2-D geometry solve problems in 3-D geometry 						
Course Cont	ent	 Various forms of the equation of a plane Straight line Various forms of the equation of a sphere Some of the conicoid surfaces and their equations: Ellipsoid, Hyperboloid of one sheet, Hyperboloid of two sheet, tangent plane and normal line. 						
Methods of t learning	eaching and	Lectures, tutorial, group discussion, problem solving, reading materials						
Method of A	Method of Assessment Continuous assessment -20% End Semester Examination – 80%							
References		 Jain, P. K. A Textbook of Analytical Geometry of Three Dimensions. New Age International, 2005. Chatterjee, Dipak. Analytic Solid Geometry. PHI Learning Pvt. Ltd., 2003. Zameeruddin, Q. and Khanna, V.K., Solid Geometry, Vikas Publishing House Private, Limited, 1987. 						

MAT224δ: Geometry (15 lecture hrs + 8 tutorial hrs) -(Credit Value 1.25)

 $MAT225\beta: Mathematical \ Statistics-I\ (30\ lecture\ hrs\ +\ 15\ tutorial\ hrs\)\ -Prerequisite\ MAT113\delta\ (Credit\ Value\ 2.5)$

Course Unit ΜΑΤ225β		Course Unit Title	Math	ematical Statis	tics I		
Unit number		Lectures (hrs.)	30	Pre-	MAT112S		
Credits	2.5	Practical (hrs.)		- requisites	ΜΑΤ113δ		
Course Uni Objectives	t	The objective of this course unit is to provide students with basic knowledge of two dimensional random variables and with skills of applying sampling distributions and other main distributions					
Learning O	utcomes	 apply ideas and t use various statistics 	problem heorem stical dis	ns associated w s of sampling d tributions for d	vith joint probability distributions listribution for other distributions decision making considering test		
Course Con	ıtent	functions, Conditional I Expectation and Variance Generating functions and Distribution of function technique, Moment Gener Order Statistics Sampling distributions : Sample variance, Sample Distribution of sample m proof,	Distribut e of lind Joint n s of ran eratingfu Randor ing Dist nean, La	ion functions ear functions noments, Covar adom variable unction techniq n sample, Statis ributions relate aws of Large m	 ions, Joint Cumulative Distribution s, Independence and Expectations, of random variables, Joint Moment riance and correlation coefficients s:Cumulative Distribution Function ue, Transformation technique. stic, Sample moment, Sample mean, ed to the Normal Distribution. The umbers, Central Limit theorem with Distribution, Student-t-Distribution 		
Methods of and learnin	_	Lectures, Group Discuss	ions, Re	ading material	s, Problem solving, Tutorials		
	Assessment	Continuous assessment End Semester Examinat					

- Wackerly, Dennis, William Mendenhall, and Richard L. Scheaffer. *Mathematical statistics with applications*. Sixth Edition, Cengage Learning, 2014.
- Freund, John E., and Ronald E. Walpole. *Mathematical Statistics Englewood Cliffs*. (1980).
- Sahoo, Prasanna. Probability and mathematical statistics, University of Louisville (2013).

Mathematics Level III - Semester I

,	1 2 (Course Unit Title	Group Th					
Course Unit number	MAT311β	Lecture (Hrs) Tutorials		30 15	Pre- requisites	MAT121β		
Credits	2	Practical (Hrs)		-				
Course Unit Objectives	of group theory					sic concepts		
Learning OutcomesOn successful completion of the course unit, the student should to explain the basic concepts of groups.• demonstrate knowledge of the content of the major theorems.• use appropriate ideas for the proofs of the theorems.• apply concepts of groups and theories to real problems.					be able to:			
Course Conte	ent	 Groups and subgroups: Definition and examples of Groups, Baic properties of Groups, Subgroups, Cyclic Groups. Permutation Groups: Definition and Notations, Properties of and manipulate permutations, Cosets and Lagrange's Theorem: Properties of Cosets, Lagrange's Theorem and Consequences, An application of Cosets to Permutation Groups, Normal Subgroups and Quotient Groups. Group Homomorphisms and Isomorphisms: Definitions and Examples of Group Homomorphism and Isomorphism. Properties of Homomorphisms. Fundermental Theorem of Group Homomorphism, Properties of Isomorphisms. 						
Method of tea learning	aching and	Lectures, Tutorials and Reading Materials						
Method of Assessment		Assessment test : 20%, End semester Written Examination : 80%						
References		 Vijay K. Kanna & S.K. Bhambri, <i>A Course in Abstract Algebra</i>, Vikas Publishing, 2017. Joseph A. Gallian, Contemporary <i>abstract algebra</i>, 1991: 374-375. Hungerford, Thomas W. <i>Abstract algebra: an introduction</i>. Cengage Learning, 2012. Any Algebra, Abstract Algebra book 						

MAT311β: Group Theory (30 lecture hrs + 15 tutorial hrs) -(Credit Value 2.5)

Course	MAT2120	Course Unit Title	Real Analysis I	II			
Unit number	ΜΑΤ312β	Lectures & Tutorials	Lectures & Tutorials (Hr)		Pre- requisites		
Credits	2.5	Lab (Hr)		_			
Objectives		• explanation of th (eg. Limits, Con	en sets, closed sets a ne properties of real tinuity, Derivatives) ow to find and classi	and limit po valued and	oints in multidin vector valued n	nensional spaces. nultivariable functions e functions with and	
Learning (Dutcomes	 On completion of the course unit student should be able to: Identify the properties of subsets in multidimensional spaces (eg, Closed sets, Open sets, Limit points). Find Directional derivatives, Partial derivatives, Total derivatives, Gradients of multivariable functions. Explain Continuity and Differentiability of real valued and vector valued multivariable functions. Identify sufficient conditions for the equality of mixed partial derivatives of multivariable functions. Identify the Extremes and their types of multivariable functions with and without constraints. 					
Course Co Method of		Open sets, Open balls, functions in multidimen field with respect to a v derivatives of higher or sufficient condition for Derivatives of vector fi Differentiability implie sufficient conditions fo defined implicitly. Class constraints using Lagra	nsional spaces, Lin vector. Directional oder, The total deri differentiability, A elds, s continuity, The c r equality of mixed ssification of extrem nges Multipliers. I	nits and co derivative vatives, T A chain rule chain rule d partial d ma of mul Double int	ontinuity, The es, Partial deriv he Gradient of le for derivativ for derivatives erivatives, Der tivariable func	Derivatives of scalar vatives, Partial Scalar field, A res of scalar field, of vector field, ivatives of functions	
and learnin Method of	ng Assessment	Semester end Examina		: 8	0%		
References	3	Mid semester Examina Mathematical Analysis The calculus with sever Calculus, Elliott Mende Elementary Multivarial	, Malik ral variables Part II, Lo elson.		l.		

MAT312β: Real Analysis-III (30 lecture hrs + 15 tutorial hrs) -(Credit Value 2.5)

		Course Unit Title	Mather	natical	Statistics II	
Course Unit number	ΜΑΤ313 β	Lectures (Hr)		30	Pre- requisites	ΜΑΤ225β
Credits	2.5	Tutorials (Hr)		15		
Objectives	1	The objective of this mathematical statistic and hypothesis testin	es such a			
Learning O	Putcomes	 formulate nu determine wl procedure. select the lev the null hy 	ulation p properties oncept of onfidence Il and alt nich test el of sign potheses	aramete s of esti f confide e interva ernative statistic	rs. mators ence interval al for a population hypotheses. is suitable for a t e and the criteria	n parameter. esting for rejection of
Course Cor	itent	Point estimation: The Maximum Likelihood Efficiency, Consister Exponential family, Construction Interval Estimation Tests of Hypotheses Critical Region, Type Likelihood-ratio Test Generalized Likelihoo Tests of Hypotheses	d, Proper acy, Suffi Cramer - Confide Simple Simple of Erro Most po od ratio	ties of p cciency, Rao Ine ence Inte Hypoth or, Power owerful Fest, Ur	ooint estimation: Minimal Sufficie equality, Complet erval for the mean esis, Composite I er Function, Size Test, Neyman-Pen iformly Most Po	Unbiasedness, ent Statistics, eness. n and variance. Hypothesis, of Test, Simple earson lemma, werful Test,
Method of (eaching and	learning: Lectures, Di	scussion	s and R	eading materials	
Method of A	Assessment:	Continuous assessme Semester End writter		ation		: 20% : 80%
Pro	ald E. Walpo bability & sta	ole, Raymond H. My atistics for engineers	& scien	tists, , 9	9th ed.	-
stati	istics with app	is, William Mendenh <i>lications</i> . Sixth Edition esse C. Arnold, Introdu	n, Cengag	ge Lear	ning, 2014	

Industrial Mathematics Level I - Semester I

Course	IMT111β/	Course Unit Title	Class	ical Mechanics	s I (Dynamics)	
Unit number	AMT111β	Lectures (hrs.)	45	Pre- requisites	A/L Combined Mathematics	
Credits	2.5	Practical (hrs.)		-		
Course Uni Objectives	t	motion of a particle amotion of a rigid boo	namics nd syst ly.	and application ems of particle	ns of Newton's second law for the es. quations to solve problems in	
Learning O	utcomes	describe motion	On completion of the course unit, students should be able to describe motion of a particle, a system of particles and a rigid body apply Lagrange's and Hamiltonian equations to solve problems in Dynan			
Course Con	itent	Momentum, Angular (Newton's laws), Moti inertia, Parallel axes t products of inertia, Parallel	velocit on of a heorem rinciple of a	y, Angular n system of pa , Perpendicula axes and pr rigid body w	es, Velocity, Acceleration, Linear nomentum, Motion of a particle rticles, moments and products o ar axes theorem for moments and inciple moments of inertia, Euler with one point fixed, generalized tonian functions.	
Methods of learning	teaching and	Reading material, Lectu	ires, Ti	itorial Classes,	Discussion, Videos	
Method of A	Assessment	Continuous assessment End Semester Examin		0%		
References						

IMT111B: Classical Mechanics-I (Dynamics) (30 lecture hrs + 15 tutorial hrs) -(Credit Value 2.5)

- Loney, S. L. Dynamics of a Particle and of Rigid Bodies. Bull. Amer. Math. Soc 17 (1911): 211-212.
- R Spiegel, Murray, Mathematical Mechanic
- R Spiegel, Murray, Theoretical Mechanics
- R Spiegel, Murray. *Theory and Problems of Theoretical Mechanics* (Schaums Outline), 2021.
- Bali, N.P., Golden Dynamics, Laxmi Publications Pvt Limited, 2011

Course	DAT 11-20	Course Unit Title	Math	ematical Comp	outing		
Unit number	IMT 1b2β	Lectures (hrs.)	15	Pre-	None		
Credits	2.5	Practical (hrs.)	60	- requisites	none		
Course Unit Objectives		The objective of this course unit is to provide the students the ability to write C programs on UNIX system to solve some mathematical and practical problems.					
Learning Ou	itcomes	• apply the know	ic intro ledge t matical	duction to com o working with concepts and p	puter system and its generations. I Linux operating system. procedures in C language.		
Course Cont	ent	Numerical computat computer architectur languages, application Introduction to Linu UNIX commands, dire Programming with	ion and e, hard packa x Oper ectory s C on U compil	d mechanical of dware, softwar ges rating System structure, text e NIX system ation, debuggin	re and liveware , programming ditors ng, Formatted input-output, control		
Methods of t learning	eaching and	Lectures, Reading Mate	erials, A	Assignment bas	edlearning as practical session.		
Method of A	ssessment	Semester I Examination Semester II Examination Semester II Examination	on (Proj	ect report): 359			
References		C Programming: A Mo Any C Programming B		pproach by K.N	N. King		

Course IMT/AMT Unit 121b		Course Unit Title	e Classical Mechanics II (Statics)				
number		Lectures (hrs.)	45	Pre-	None		
Credits	2.5	Practical (hrs.)		- requisites	Trone		
Course Unit Objectives Learning Ou	The objectives of this course unit is • Concepts of force, moment, and mechanical equilibrium. • Analyze forces and moments in 2D and 3D. • Analyze distributed forces and internal loads. • Analyze forces in various systems such as beams and cables. • On completion of the course unit, students should be able to • Analyze the properties (components, resultants, and moments) or force and force systems in 2D& 3D. • Solve equilibrium problems of various types of structures using analytical models, rigid bodies, FBDs and equations of equilibrium			and 3D. hal loads. hal loads. hould be able to resultants, and moments) of a us types of structures using s and equations of equilibrium.			
		and use the eq Identify the ec Theory of Forces and of forces acting at a point, Vector Resultant of a system of	uivalent uilibriu l Couple bint, Cor or mome of forces	point force in m analysis of b es: Force actin adition for equi- ent of a force, 0 s in 3D, Invaria	bad by an equivalent point force, static analysis. beams and cables. g at a point, Resultant of a system ilibrium of a system of forces Couple, Moment of a couple, ant, Wrench, Coplanar system of		
Course Content		 forces, Varignon's Theorem of moments, Parallel systems, Conjugate forces. Bending of Beams:Shear and bending moment in a beam, Relations among Load, Shear and bending moment, Thin elastic beams, Bernoulli-Euler law, Macaulay's notation, Clapeyron's equation for three moments. The Catenary:Flexibility, The common catenary, Parabolic chain, Suspension 					
		bridge, Catenary of uniform strength, General equations of equilibrium of a string in one plane under given forces, Strings on rough curves, Variable chain hanging under gravity.					
Methods of t learning	teaching and	Reading material, Lectures, Tutorial Classes, Discussion, Videos					
		Continuous assessment -20% End Semester Examination -80%					
Method of A	ssessment	End Semester Examin	nation -	80%			

IMT122β: Mathematical Modelling-I (30 lecture hrs + 15 tutorial hrs) -Prerequisite MAT112δ (Credit	
Value 2.5)	

Value 2.5		Course Unit Title	Mathematical I	Modelling	g - 1		
Course Unit number	AMT/IMT 122β	Lectures & Tutorials (Hr)	45	Pre- requisites	MAT112δ	
Credits	2.5	Lab (Hr)		-		WIXT 1120	
Objectives		The objective of this cou skills, which will have ap				ne basic modeling	
Learning Out	comes	 On completion of the course unit student should be able to: apply the knowledge to develop discreet and (or) continuous mathematical model for a real situation. obtain the solutions for the model and classify the equilibrium solutions. analyse the solutions using a variety of techniques with theoretical and graphical Methods. explain the behavior of the model. discuss the validation of the model. 					
Course Conte	nt	Introduction: General Intr Deterministic vs Stochastic Modelling via First Order Simple Higher Order Diffe systems of Ordinary Differ Analysis of Solutions: Exi dependence on initial cond constant and variable coeff Interpretation of solutions i Applications: Population e Biology and Medicine, Pha modelling.	c, classification of r Differential Eq rential Equations, ential Equations (stence and unique itions and parame icients, autonomo n modelling. ecology, chemical	models. uations: N Linear D ODEs). eness of so ters, linear ous system kinetics,	Aodelling Thro ifferential Equ olutions, contir ar systems of eco as, phase space traffic dynamic	ugh First Order and ations (LDEs), muation of solutions, quations with , and stability, cs, Mechanics,	
Method of tea learning	ching and	Lectures, Reading material	s, Tutorial discuss	sions			
Method of As	sessment	Semester end Examination Mid semester Examination		: 80% : 20%			
References		 Barnes, B., G., R. Fulfor <i>Studies</i>. Chapman and James Sandefur, <i>Eleme</i> Edition, Brooks Cole, 2 Kapur, Jagat Narain. <i>M</i> Any Mathematical Mo 	Hall/CRC, 2014. entary Mathematic 2002. Iathematical mode	cal Model	lling: A Dynam	<i>ic Approach</i> , 1sr	

D.(TO110	Course unit Title	Classical Med	chanics III(Fluid Dyr	namics)
2.5	Lectures and – Tutorials (Hr)	45	Pre-requisites	A/L Combined Mathematics
5	 basic concepts in D the motion of a part concepts of fluid dy kinematics and dyn Flow field around 2 	ynamics and appli icle and systems of mamics. amics of fluid mot 2D and 3D objects	ications of Newton's of particles.	
Outcomes	 Identify types of flu distinguish differen compressible/incom describe concepts n identify stream line 	id flows ce between steady pressible flow ecessary to analys s, path lines and v	/unsteady, uniform/r e fluid motion ortex lines,	
ontent	Equation of continuit Uniqueness theorem,	y, Euler's and Ber Kinetic energy, p	noulli's equations, Ir otential flow, source	rotational motior
0	Reading material, Le	ctures, Problems S	Solving	
f Assessment:				
	s Outcomes ontent f teaching ing	2.5Lectures and Tutorials (Hr)2.5The objectives of th • basic concepts in D the motion of a part • concepts of fluid dy • kinematics and dyn • Flow field around 2 potential flow solutOutcomesAfter the successful c • Identify types of flu • distinguish differen compressible/incom • describe concepts n • identify stream line • use continuity, EuleontentFluid Dynamics: Typ Equation of continuity Uniqueness theorem, and 3D Images, Milnedf teaching ingReading material, Lee Continuous assessment:	IMT211βLectures and Tutorials (Hr)452.5The objectives of this course unit is to • basic concepts in Dynamics and appli- the motion of a particle and systems of • concepts of fluid dynamics. • kinematics and dynamics of fluid mo • Flow field around 2D and 3D objects potential flow solutions.OutcomesAfter the successful completion of this • Identify types of fluid flows • distinguish difference between steady compressible/incompressible flow • use continuity, Euler and Bernoulli ed Fluid Dynamics: Types of flows, Equa Equation of continuity, Euler's and Ber Uniqueness theorem, Kinetic energy, p and 3D Images, Milne Thompson Theo f teaching ingf Assessment:Continuous assessment:20%	IMT211β Lectures and Tutorials (Hr) 45 Pre-requisites 2.5 The objectives of this course unit is to explain: • basic concepts in Dynamics and applications of Newton's the motion of a particle and systems of particles. • concepts of fluid dynamics. s • kinematics and dynamics of fluid motion. • Flow field around 2D and 3D objects using combination of potential flow solutions. Outcomes • Identify types of fluid flows • Identify types of fluid flows • Identify types of fluid flows • identify stream lines, path lines and vortex lines, • use continuity, Euler and Bernoulli equations Fluid Dynamics: Types of flows, Equations of stream, path Equation of continuity, Euler's and Bernoulli's equations, Ir Uniqueness theorem, Kinetic energy, potential flow, source and 3D Images, Milne Thompson Theorem f teaching ing Reading material, Lectures, Problems Solving f Assessment: Continuous assessment:20%

Industrial Mathematics Level II - Semester I IMT211β: Classical Mechanics-III (Fluid Dynamics) (30 lecture hrs + 15 tutorial hrs) -(Credit Value 2.5)

• Chorlton, Frank. *Textbook of fluid dynamics*. Van Nostrand Company, 1967.

• Green, A. E. *Theoretical Hydrodynamics*.

Course Unit	D (TTO) 00	Course Unit Title	Mathe	ematical Comp	uting (MATLAB)	
number	ΙΜΤ2b2β	Lectures (hrs.)	15	Pre-	None	
Credits	2.5	Practical (hrs.)	30	requisites	None	
Course Unit Objectives		-	as a sc to build MATL ls to wi	eientific calcula in functions in AB programs u rite codes to ob	MATLAB sing script and functions tain analytical solutions and	
Learning Ou	tcomes	 differential equations use MATLAB codes system of differential provide plots such as implement algorithm by using non-linear e equations. 	AB pro solvin for obt equati 2D and s and M quation	ograming g system of lin aining numeric ons d 3D for compl IARLAB code ns, system of ec	ear equations and system of cal approximations for nonlinear ex functions s for real applications modeled quations and system of differential	
Course Cont	ent	saving variables in files w matrix functions Script and functions:Simple evaluating polynomials, str and 3D Plots, use of M differentiation and integration	ow as ith ext MATL uctural (ATLA on, so otting	a scientific ca ension mat, fo AB codes for n programing, fo B for solvin lving linear sys numerical so	hatrix manipulations, finding roots, or loop, while loop, if, else if, 2D g nonlinear equations, numerical tems, solving ordinary differential lutions of system of differential	
Methods of to learning	eaching and	Lectures and practical session	18			
Method of As	ssessment	Semester I Examination (Mid 20% + End semester 80%) :30% Semester II Examination (Project report): 35% Semester II Examination (Viva): 35%				
References		Steven C. Chapra, Applied N Scientists, McGraw-Hill, 3rd			h MATLAB for Engineers and	

IMT2b2 β : Mathematical Computing (15 lecture hrs + 60 practical hrs) -(Credit Value 2.5)

Industrial Mathematics Level II - Semester II

IMT221β: Mathematical Modelling-II (30 lecture hrs + 15 tutorial hrs) -Prerequisite IMT122β (Credit Value 2.5)

Course	AMT/IMT	Course Unit Title	Math	ematical Mode	elling II	
Unit number	221ß	Lectures (hrs.)	30	Pre- requisites	Mathematical Modelling-I (AMT/IMT	
Credits	2	Tutorials (hrs.)	15	- requisites	121ß)	
Course Unit Objectives	t	equations(ODE), di	ling the fference	real world prole equations and	blems through ordinary differential partial differential equations(PDE), DEs and PDEs analytically and numerically	
Learning O	utcomes		odels fo uations o si linear	r real world pro or systems of d partial differer sing different n	oblems using ifferential equations, difference equations ntial equations, second order partial numerical methods	
Course Con	itent	Introductory Numerical Solution Difference Equations, Furth Modelling with Partial Di ofseparation of variables, Models), Momentum-Balan Variational Principles (The	utions of her Stuc fferentia Mass-B nce Equ third me	² Differential Ed ly on Systems al Equations (1 alance equation ation (The sec ethod of obtain	quations, Mathematical Modelling through of Differential Equations with Matrices. PDEs): The concept of a PDE, Method on (The first method of obtaining PDE cond method of obtaining PDE Models), ning PDE Models), Probability Generating E Models), Nature of PDEs Initial and	
Methods of learning	teaching and	Lectures, discussions during the lectures, tutorial discussion.				
Method of A	Assessment	Continuous assessment -20% End Semester Examination - 80%				
References						

References

- Neil Gershenfeld, *The Nature of Mathematical Modeling*, Cambridge University Press, 2011.
- B. Barnes, G.R. Fulford, *Mathematical Modelling with Case Studies: A Differential Equations Approach using Maple and MATLAB*, Second Edition, CRC Press, 2002
- Griffiths, David, Higham, Desmond J., *Numerical Methods for Ordinary Differential Equations -Initial Value Problems*, Springer, Undergraduate Mathematics Series, 2012.
- Walter Strauss, Introduction to Partial Differential Equations, 2nd edition, John Wiley & Sons, 2008.

IMT223β: Applied Probability (Information Theory)(30 lecture hrs + 15 tutorial hrs) -Op. for students following Industrial Mathematics (Credit Value 2.5)

Course	AMT/IMT2	Course Unit Title	Appli	ed Probability	(Information Theory)			
Unit number	23β	Lectures (hrs.)	30	Pre-	None			
Credits	2	Tutorials (hrs.)	15	requisites	Tione			
	•	The objectives of this course unit are						
		• to learn basic con	-		•			
Course Unit					Theory is used to quantify			
Objectives		information and						
		e e		•	is related to other fields of			
		Science and Mat			111 11			
		On completion of the co						
					tion Theory for the development of			
Learning Ou	itcomes	Information Tec			agents in Information Theory to			
					ncepts in Information Theory to			
		quantify and process information.understand applications of Information Theory in other fields.						
		Elementary Probability Theory: discrete and continuous random variables, probability distributions, laws of large numbers, modes of convergence,						
		Markov and Chebyshev inequalities						
		Introduction to Information Theory: Claud E Shannon- the father of						
		information theory, Information measures – entropy, joint entropy, conditional						
Course Cont	ont				. Convex/concave functions,			
Course Com	lent	Jensen's inequality and						
					mptotic equipartition property,			
					nnel capacity, Noiseless Binary			
		Channel, Binary Symmetric Channel Fundamentals of Data Compression: Kraft inequality, Huffman coding.						
					ry: Manifold of probability			
		distributions/densities,						
		Lectures: 30 hrs (2 hrs)			ponential failing			
Methods of t	eaching and	Tutorial classes: 15 hrs						
learning			· •	,				
			200/					
Method of A	ssessment	Continuous assessment: End Semester Examinat)/				
			A First	Course in Prob	ability Theory, Pearson Education,			
References		2002.						
		• David Applebaum, Probability and Information, Cambridge University						
		Press, 1996.						

IMT224 β : Applied Statistics-I (30 lecture hrs + 15 tutorial hrs) -Op. for students following Industrial Mathematics (Credit Value 2.5)

Course	ΑΜΤ224β	Course Unit Title	Applied Statistics	s-I			
Unit number	/IMT224β	Lectures (Hr)		30	Pre- requisites		
Credits	2.5	Tutorials (Hr)		15	-		
Objectives		The objective of this course unit i practical problems by statistical n thinking and analysing problems	nethods. It will help	student	s to develop sk	ills in	
Learning O	utcomes	 After the successful completion o explain concepts of probabilit evaluate various quantities of develop probabilistic and stat apply statistical methods to a sociology etc. 	ty and statistics. probability distribu istical models for so	tions and	d random varia lications	bles.	
Course Con	tent	Collecting and Summarizing da of a set of observations, Median, J Samples and Populations: Met Range, Mean deviation, Variance and Standar summaries, Box and Whisker plo Joint distributions of data: The Quantitative description of a statistical relation Linear regression: Regression ex Statistical Applications with Normal approximations.	Arithmetic Mean, M hods of choosing a rd deviation, Semi ts, stem and leaf plo e Scatter diagram, th h, Covariance, Corre quation, Prediction a	Iode. sample -interqua ots. ne conce lation co and error	, Measures of artile range, f ept of a statistic pefficient. c, Interpreting r	variability: ive number cal relation, regression.	
Method of to and learning	0	Lectures, Reading materials and Tutorial discussion					
Method of A	Assessment	t Continuous assessments 20% and Semester End Written Examination80%					
References		 Mark L.Berenson, Basic Business Statistics Concept and Applications, (519.5BER). HarrayJrankan, Steven C.Althoen, Statistics concept and applications, (519.5FRA). William G. Cochram, Sampling Theory. ,Jeffrey L.Bradney, Applied Statistics for Public Administration 					

Industrial Mathematics Level III - Semester I

WI 501P.		thematics Project (90 proje	Mathematical C		(IAVA)_ Indu	ictrial	
Course Unit	IMT3b1β	Course Unit Title	Mathematics pro		(<i>JT</i> V <i>T</i>) ⁻ Inde	istriar	
		Lectures (Hr)		15	Pre- requisites	None	
Credits	2.5	Lab (Hr) (Sem I + Sem	II)	60	requisites		
		The objectives of this co	urse unit are to de	velop skil	ls in		
Objective	S	 solving mathematics using object oriented developing new mathematics 	d programming,	•	s or real world	problems	
		 optimizing existing 	Ű,				
		On the successful comple				able to:	
Learning	Outcomes	 suggest new algorithms to solve identified industry related mathematical problems or any real world problems. convert existing codes to Java to get reliable and efficient codes and reusing existing codes to solve problems. 					
		Introduction to JAVA: Fundamentals of programming such as variables, data types and operators, key words, control structure (decisions and loops), methods, arrays, access control.					
Course Co	ontent	Object Oriented Programming: Fundamentalsof object oriented programming					
		(defining classes, abstraction, inheritance, polymorphism, encapsulation, interfaces).					
		Handling exceptions.					
Method of and learn	0	Lectures and Practical see	ssions				
Method o	f	Semester I Examination (Mid 20% + End semester 80%) :30%					
Assessment		Semester II Examination (Project report): 35%					
		Semester II Examination (Viva): 35%					
		Programming with J	Java: a primer by	B <mark>a</mark> lagurus	amy		
Reference	25	 Programming with Java: a primer by Balagurusamy Schaum's outline of theory and problems of programming with Java by Hubbard, John R. 					

IMT3b1β : Industrial Mathematics Project (90 project hrs) -(Credit Value 2.5)

 $IMT312\beta: Mathematical Modelling-III (30 lecture hrs + 15 tutorial hrs) - Op. for students following Industrial Mathematics (Credit Value 2.5)$

Course		Course Unit Title	Mathe	ematical Mode	lling III	
Unit number	ΙΜΤ312β	Lectures +Tutorial Discussions (hrs.)	45	Pre- requisites	None	
Credits	3	Practical (hrs.)				
Course Unit Objectives		awareness of the import modelling techniques the discussed with example	rtance at invo s taken nsform	of mathematic lve differential from physics, s as a tool to so	bdelling III is to increase student s in the modern world. Variety of l equations and graph theory will be biology, chemistry, economics and olve differential equations and basic	
Learning Ou	ıtcomes	 solve differentia model practical the problems; demonstrate the 	al equa proble basic	tions using Lap ms that involve techniques of g	he student will be able to: place transforms; e differential equations and solve graph theory; solve some network optimization	
Course Cont	tent	Solution of Linear Differential Equations by Laplace Transforms, Mathematical Modelling through Graphs, Mathematical Modelling Through Calculus of Variations and Dynamic Programming or Special Topics and/or Project, Stochastic Modelling, A survey on Ancient Sri Lankan Science and Technological Methods, Topics in Mathematical Modelling of Life Environmental relationships.				
Methods of t learning	Methods of teaching and Lectures, class discussion, tutorial discussion.					
Method of A	ssessment	Continuous assessment: 20% End Semester Examination:80%				
References		 Mathematical M Graph Theory a An Introduction J. Farlow 	and App	olications, by		

 $IMT313\beta$: Applied Statistics-II (30 lecture hrs + 15 tutorial hrs) -Op. for students following Industrial Mathematics, Prerequisite IMT224 β (Credit Value 2.5)

Course	IMT313β	Course Unit Title	Appl	ied Statistics II	[
Unit number	ΑΜΤ314β	Lectures (hrs.)	30	Pre-	ΙΜΤ224β	
Credits	2.5	Practical (hrs.)		- requisites	ΑΜΤ224β	
Course Uni Objectives	t	The objectives of this of hypothesis testing a			de the students with the knowledge non parametric tests.	
Learning O	utcomes	• apply the rele	pply the vant nor nowledg	suitable param	nould be able to netric test for the real problems. st for the real problems. making based on the test hypothesis	
Course Con	itent	Testing Hypothesis a variance, Linear mode Test statistics and reje The population regress of variance for regress Non parametric test	bout m els for a ection ru ession: l sion ts: Chi-	any population nalysis of varia- les Formulating hy Square test, To -Whitney U-te	mean and two population means n means:Introduction to analysis of ance, variability as sum of squares, pothesis about regression, Analysis est of independence, Kolmogorov- est, Runs test (one sample runs test,	
Methods of learning	teaching and	Lectures, tutorial, group discussion, problem solving, reading materials				
Method of A	Assessment	Continuous assessme End Semester Exami				
References		Prem S. Mann	n, Introd	uctory statistic	d Data Analysis s Runger, Statistics and Probability	

Industrial Mathematics Level III - Semester II

Refer the Optional course units offered by the department of Mathematics for Level III- Semester II, for details.

Applied Mathematics Level I - Semester I

AMT111β: Classical Mechanics-I (Dynamics) (30 lecture hrs + 15 tutorial hrs) (Credit Value 2.5)

Course	IMT111β/	Course Unit Title	Classi	ical Mechanics	I (Dynamics)	
Unit number	ΑΜΤ111β	Lectures (hrs.)	45	Pre- requisites	A/L Combined Mathematics	
Credits	2.5	Practical (hrs.)				
Course Unit Objectives		motion of a particle armotion of a rigid bod	amics a nd syste y.	nd application ms of particles	s of Newton's second law for the uations to solve problems in	
Learning Ou	itcomes	describe motion	of a pa	rticle, a system	lents should be able to a of particles and a rigid body quations to solve problems in Dynam	
Course Con	tent	Momentum, Angular (Newton's laws), Motic inertia, Parallel axes th products of inertia, Pr	velocity on of a neorem, inciple a rigid b	y, Angular m system of par Perpendicular axes and prin body with one p	s, Velocity, Acceleration, Linear omentum, Motion of a particle ticles, moments and products of r axes theorem for moments and nciple moments of inertia, Euler point fixed, generalized coordinates, ns.	
Methods of and learning	0	Reading material, Lectu	res, Tut	orial Classes, l	Discussion, Videos	
Method of A	ssessment	Continuous assessment: 20% End Semester Examination:80%				
 References S.L. Loney, Dynamics of particles and Rigid Murray R, Spiegel, Mathematical Mechanic Murray R, Spiegel, Theoretical Mechanics Bali, N.P, Book of Dynamics, F. Chorlton. 			l bodies	5		

• F.P. Beer, E.R. Johnston, J and P.J. Cornwell, Vector Mechanics for Engineers

Course		Course Unit Title	Math	ematical Found	lation of Computer Science	
Unit number	ΑΜΤ112β	Lectures (hrs.)	30	Pre-	None	
Credits	2.5	Tutorials (hrs.)	15	- requisites	Trone	
Course Unit Objectives		mathematical lo	dge to a ogic, var lean alg	pply mathemations types of n bebra and analysis	tical concepts in the areas of umber systems and their sis of algorithms using	
Learning Ou	itcomes	another (especBoolean algeb	logic an ber syst ially Bi ra in co	d logical reaso ems and conver nary, Octal and nstruction of si		
Course Cont	tent	Logical connectives; equivalence; Condition quantifiers and symbol Different number s another: Present and the System; Octal Number conversion; Binary Art Boolean algebra in co and Constants; Axion Disjunctive Normal For Circuits; Minimization Proving the corre mathematics: Proof of Rules; Recursion and For	Truth nal sta ic logic ystems he Ron System thmetic onstruc ns for ; Karna ectness Correc Recursiv oefficie	tables; Tautolo tements and v and convert nan; The Binan r; Hexadecima r; Two's Comp tion of simple a Boolean Alg vitching Circui ugh Maps of simple etness; Assignm re Relations; So	logic circuits : Boolean Variables gebra; Laws of Boolean Algebra; ts; Simplification of circuits; Logic	
Methods of t learning	teaching and	Conducting lectures an		al classes		
Method of A	ssessment	Continuous assessment 20% End Semester Examination 80%				
References		Theory and Problems of Discrete Mathematics - Schaum's outline series Kenneth H. Rosen Discrete Mathematics and its Applications				

AMT112 β : Mathematical Foundation of Computer Science (30 lecture hrs + 15 tutorial hrs)

Applied Mathematics Level I - Semester II

Course Unit	IMT/AMT 121b	Course Unit Title		ical Mechanics		
number		Lectures (hrs.)	45	Pre-	None	
Credits	2.5	Practical (hrs.)		- requisites		
Course Unit Objectives		Analyze forcesAnalyze distril	rce, mo s and me outed fo	ment, and mec oments in 2D a rces and intern		
Learning O	utcomes	 force and force Solve equilibrianalytical mod Represent a dia and use the equilibrianal sector of the equilibrianalytical mod 	operties e system um prol els, rigi stributeo uivalent	s (components, as in 2D& 3D. blems of variou d bodies, FBD d line or area lo point force in	hould be able to resultants, and moments) of a us types of structures using s and equations of equilibrium. bad by an equivalent point force, static analysis. beams and cables.	
Course Content		 Theory of Forces and Couples: Force acting at a point, Resultant of a system of forces acting at a point, Condition for equilibrium of a system of forces acting at a point, Vector moment of a force, Couple, Moment of a couple, Resultant of a system of forces in 3D, Invariant, Wrench, Coplanar system of forces, Varignon's Theorem of moments, Parallel systems, Conjugate forces. Bending of Beams:Shear and bending moment in a beam, Relations among Load, Shear and bending moment, Thin elastic beams, Bernoulli-Euler law, Macaulay's notation, Clapeyron's equation for three moments. The Catenary:Flexibility, The common catenary, Parabolic chain, Suspension bridge, Catenary of uniform strength, General equations of equilibrium of a string in one plane under given forces, Strings on rough curves, Variable chain hanging under gravity. 				
Methods of teaching and learning Reading material, Lectures, Tutorial Classes, Discussion, Videos					Discussion, Videos	
Method of A	ssessment	Continuous assessment: 20% End Semester Examination:80%				
References		 A.S. Ramsey, Statics N.P. Bali, Golden Statics R.C. Hibbeler, Engineering Mechanics-Statics 				

AMT121β: Classical Mechanics-II (Statics) (30 lecture hrs + 15 tutorial hrs) (Credit Value 2.5)

		Course Unit Title	Mathematical	Modelling	g - 1		
Course Unit number	AMT/IMT 122β	Lectures & Tutorials (Hr)		45	Pre- requisites	ΜΑΤ112δ	
Credits	2.5	Lab (Hr)		_		MATTIZO	
Objectives		The objective of this course skills, which will have ap				ne basic modeling	
Learning OutcomesOn completion of the course unit student should be able to: • apply the knowledge to develop discreet and (or) continue a real situation. • obtain the solutions for the model and classify the equilibre • analyse the solutions using a variety of techniques with the Methods. • explain the behavior of the model. • discuss the validation of the model.					ntinuous mat quilibrium solu		
Course Conte		Introduction: General Intr Deterministic vs Stochastic Modelling via First Order Simple Higher Order Differ systems of Ordinary Differ Analysis of Solutions: Exi dependence on initial condi constant and variable coeffi Interpretation of solutions i Applications: Population e Biology and Medicine, Pha modelling. Lectures, Reading materials	, classification of Differential Eq rential Equations, ential Equations (stence and unique tions and parame icients, autonomo n modelling. cology, chemical rmokinetics, Eco	models. uations: N Linear D ODEs). eness of so ters, linea bus system kinetics, m nomics, E	Iodelling Thro ifferential Equi- plutions, contin r systems of ec- is, phase space, traffic dynamic	ugh First Order and ations (LDEs), muation of solutions, puations with , and stability, cs, Mechanics,	
learning	8						
Method of As	sessment	Semester end Examination: 80%Mid semester Examination: 20%					
References		 Barnes, B., G., R. Fulford, and Glenn Fulford. <i>Mathematical Modelling with Case Studies</i>. Chapman and Hall/CRC, 2014. James Sandefur, <i>Elementary Mathematical Modelling: A Dynamic Approach</i>, 1sr Edition, Brooks Cole, 2002. Kapur, Jagat Narain. <i>Mathematical modelling</i>. New Age International, 1988. Any Mathematical Modelling Book 					

AMT122β: Mathematical Modelling-I (30 lecture hrs + 15 tutorial hrs) (Credit Value 2.5)

Applied Mathematics Level II - Semester I

Course unit	ΑΜΤ211β	Course unit Title	Classical Me	echanics III(Fluid Dyn	amics)	
Credits 2.5		Lectures and Tutorials (Hr)	45	Pre-requisites	A/L Combined Mathematics	
Creans	2.3					
Objectives		 The objectives of th basic concepts in Dythe motion of a part concepts of fluid dy kinematics and dyna Flow field around 2 potential flow solution 	ynamics and app icle and systems namics. umics of fluid mo D and 3D object	lications of Newton's of particles.		
Learning Outc	omes	 After the successful completion of this course unit, students should be able to Identify types of fluid flows distinguish difference between steady/unsteady, uniform/non-uniform, compressible/incompressible flow describe concepts necessary to analyse fluid motion identify stream lines, path lines and vortex lines, use continuity, Euler and Bernoulli equations 				
Course Content Fluid Dynamics: Types of flows, Equations of stream, path and vortex Equation of continuity, Euler's and Bernoulli's equations, Irrotational me Uniqueness theorem, Kinetic energy, potential flow, sources and Sinks is and 3D Images, Milne Thompson Theorem						
Method of teac	hing and learn	ing: Reading material, L	ectures, Problen	ns Solving,		
Method of Asse	essment: Conti	nuous assessment:20%				
	Semest	ter End Examination:809	6			
References						

AMT211β : Classical Mechanics-III (Fluid Dynamics) (30 lecture hrs + 15 tutorial hrs) (Credit Value 2.5)

• Chorlton, Frank. *Textbook of fluid dynamics*. Van Nostrand Company, 1967.

• Green, A. E. *Theoretical Hydrodynamics*.

Course		Course Unit Title	Com	outational Math	iematics		
Unit number	ΑΜΤ212β	Lectures (hrs.)	30	Pre-			
Credits	2.5	Tutorial (hrs.)	15	requisites	None		
Course Unit Objectives		skills tosolve Non-Lin	ear equ ve fitti	ation by identiand a given	le students with the knowledge and fying a suitable numerical method, n data set, anddifferentiation and		
Learning Ou	itcomes	 apply suitable in a given data set evaluate derivat 	equati nterpola ives an	ons using a suit ation and curve d integrals num	cable numerical method. fitting techniques to fit curves for perically.		
Course Cont	ent	numerical analysis, Co Solving Non Linear point Iteration $x = g(x)$ Interpolation and Cu Differences, Interpolation	mputer equation Methoor rve Fitt ing with ation ar Trapez	arithmetic and ons: Bisection d, Secant Metho ing: Interpolati n a Cubic Spline od numerical In	roduction, Using a computer to do errors. Method, Newton's Method, Fixed od, Regular-Falsi Method. on, Lagrange polynomials, Divided e, Least Square Approximation. ntegration: Getting derivatives and nposite formula), Simpson's rules,		
Methods of t learning	eaching and	Lectures, Reading materials and Tutorial discussion					
Method of A	ssessment	Continuous assessment20%End Semester Examination80%					
References		 P.W. Williams , Numerical Computation Kendall E. Atkinson, An Introduction To Numerical Analysis 					

AMT212β: Computational Mathematics (30 lecture hrs + 15 tutorial hrs) (Credit Value 2.5)

Applied	Mathematics	Level I	Ι-	Semester	Π
при	Maintinanco	LUUID	L -	Schicster	11

Course	221p: Mathemat	tical Modelling-II (30 lecture hrs			,			
Unit	AMT/IMT	Course Unit Title	Math	ematical Mode	lling II			
number	221ß	Lectures (hrs.)	30	Pre- requisites	Mathematical Modelling-I (AMT/IMT			
Credits	2	Tutorials (hrs.)	15	requisites	121ß)			
Course Unit Objectives		equations(ODE), dif	ing the free for the free for the former of	real world prob equations and	blems through ordinary differential partial differential equations(PDE), Es and PDEs analytically and numerically			
Learning Outcomes		equations	odels for uations si linear in (i) us	real world pro or systems of c partial different ing different nu	oblems using differential equations, difference ntial equations, second order partial umerical methods			
Course Cor	itent	Difference Equations, Furth Modelling with Partial Diff ofseparation of variables, I Models), Momentum-Baland Variational Principles (The t	Introductory Numerical Solutions of Differential Equations, Mathematical Modelling through Difference Equations, Further Study on Systems of Differential Equations with Matrices. Modelling with Partial Differential Equations (PDEs): The concept of a PDE, Method ofseparation of variables, Mass-Balance equation (The first method of obtaining PDE Models), Momentum-Balance Equation (The second method of obtaining PDE Models), Variational Principles (The third method of obtaining PDE Models), Probability Generating functions (The fourth method of obtaining PDE Models), Nature of PDEs Initial and					
Methods of learning	teaching and	Lectures, discussions during	Lectures, discussions during the lectures, tutorial discussion.					
Method of A	Assessment	Continuous assessment -20 % End Semester Examination 80%						
References								

AMT221β: Mathematical Modelling-II (30 lecture hrs + 15 tutorial hrs) (Credit Value 2.5)

References

- Neil Gershenfeld, *The Nature of Mathematical Modeling*, Cambridge University Press, 2011.
- B. Barnes, G.R. Fulford, *Mathematical Modelling with Case Studies: A Differential Equations Approach using Maple and MATLAB*, Second Edition, CRC Press, 2002
- Griffiths, David, Higham, Desmond J., *Numerical Methods for Ordinary Differential Equations -Initial Value Problems*, Springer, Undergraduate Mathematics Series, 2012.
- Walter Strauss, Introduction to Partial Differential Equations, 2nd edition, John Wiley & Sons, 2008.

Course	P	ity (information Theory)	` `		,			
Unit	AMT/IMT2	Course Unit Title	Appli	ed Probability	(Information Theory)			
number	23β	Lectures (hrs.)	30	Pre-				
	2	Tutorials (hrs.)	15	requisites	None			
Credits	2	· · ·						
		The objectives of this co						
Course Unit		• to learn basic con	-		•			
Course Unit					Theory is used to quantify			
Objectives		information and						
		Ū.		•	v is related to other fields of			
		Science and Mat			111 11 /			
		On completion of the co						
Learning Ou	toomos	• appreciate the co Information Tec			tion Theory for the development of			
	icomes	 apply basic technologies 	niques,	results and cor	ncepts in Information Theory to			
		quantify and pro	cess inf	formation.				
		• understand applications of Information Theory in other fields.						
		-	-	•	nd continuous random variables,			
		probability distributions, laws of large numbers, modes of convergence,						
		Markov and Chebyshev inequalities						
		Introduction to Information Theory: Claud E Shannon- the father of						
		information theory, Information measures – entropy, joint entropy, conditional						
Course Cont	ent				. Convex/concave functions,			
		Jensen's inequality and						
		applications, Data processing inequality, Asymptotic equipartition property, how to model a communication channel, Channel capacity, Noiseless Binary						
					nnel capacity, Noiseless Binary			
		Channel, Binary Symmetric Channel Fundamentals of Data Compression: Kraft inequality, Huffman coding.						
					ry: Manifold of probability			
		distributions/densities, l						
		Lectures: 30 hrs (2 hrs p						
Methods of t	eaching and	Tutorial classes: 15 hrs (1 hr per week)						
learning			` •	,				
			2 001					
Method of A	ssessment	Continuous assessment:		N/				
Method of A	ssessment	End Semester Examination:80%						
		• Sheldon Ross, A	A First	Course in Prob	bability Theory, Pearson Education,			
De		2002.						
References		 David Applebaum, Probability and Information, Cambridge University 						
		Press, 1996.						

AMT223β: Applied Probability (Information Theory) (30 lecture hrs + 15 tutorial hrs)

AMT224 β : Applied Statistics-I (30 lecture hrs + 15 tutorial hrs

Course Unit	ΑΜΤ224β	Course Unit Title	Applied Statist	ics-I			
number	/IMT224β	Lectures (Hr)		30	Pre- requisites		
Credits	2.5	Tutorials (Hr)		15			
Objectives		The objective of this course practical problems by statis thinking and analyzing pro	stical methods. It will he	elp studer	its to develop sk	ills in	
Learning OutcomesAfter the successful completion of this course unit, the students should be at • explain concepts of probability and statistics. • evaluate various quantities of probability distributions and random varia • develop probabilistic and statistical models for some applications • apply statistical methods to a range of problems in science, engineering						bles.	
Course Co	ntent	sociology etc.Collecting and Summarizing data: Constructing tables and graphs, Measures of centerof a set of observations, Median, Arithmetic Mean, Mode.Samples and Populations: Methods of choosing a sample, Measures of variabilityRange, Meandeviation, Variance and Standard deviation, Semi-inter quartile range, five numbersummaries, Box and Whisker plots, stem and leaf plots.Joint distributions of data: The Scatter diagram, the concept of a statistical relationQuantitativedescription of a statistical relation, Covariance, Correlation coefficient.Linear regression: Regression equation, Prediction and error, Interpreting regression.Statistical Applications with probability models: Bernoulli, Binomial, PoissonNormal approximations.					
Method of and learnin	-	Lectures , Reading materia	ls and Tutorial discussio	'n			
Method of	Assessment	Continuous assessments 2	0% and Semester End V	Vritten Ex	amination80%		
References		 (519.5BER). HarrayJrankan, Ster (519.5FRA). William G. Cochrae 	Basic Business Statistics even C.Althoen, Statistic um, Sampling Theory. Applied Statistics for P	s concept	and application		

Applied Mathematics Level III - Semester I

71011511		cal Analysis (30 lecture hrs + 15 Course Unit Title	Numerical Ana		2.5)		
Course Unit number	AMT 311β	Lectures / Tutorials (Hr)		45	Pre- requisites	ΑΜΤ212β	
Credits	2.5	Lab (Hr)					
Objectives		 To provide students with the skills in problem solving of s methods and numerical methods and numerical methods and numerical methods knowledge of convergence knowledge of finding solut numerically. 	ethods. criterion of iterat	tive seque	nces.	I PDE)	
 Learning Outcomes On completion of the course unit, the students should be able to apply the numerical techniques for other Sciences and Engineering in real problem solving. determine the most suitable numerical technique with appropriate initial and be conditions in problem solving . compare the solutions obtained using numerical methods with those using an methods. 						nitial and boundary	
Course Con	tent	Solving Linear systems: Mat Gauss and Jordan eliminations, related to convergence of iterat SOR Methods. Numerical solutions of ordina Lipschitz conditions and consta Euler (explicit and implicit) and Errors and error propagation. H equations and Higher order Dif Numerical solutions of partia Parabolic type, Elliptic type, H	LU decompositi tive sequences an ary differential e ants, Picard Iterati d Modified Euler ligher order Taylo ferential equation al differential eq	on technic d converg quations ion technic methods, or expansi is. uations :	ques. Iterative 2 ence criteria, J (ODE): que with applic Runge Kutta n on for solving	Methods - Theorems acobi, Gauss Seidel, cations. nethod. ordinary differential	
Method of teaching and learning Lectures, Reading materials, Tutorial discussions, LMS, Hand outs							
Method of Assessment		Semester End Written Examination: 80%Mid Semester Examination: 20 %					
References • Atkinson, Kendall and Han, Weimin, Elementary Numerical Analysis, 3 rd edition, 2 • J N. Sharma., Numerical Methods for Engineers and Scientists, 2 nd edition 2007 • John H. Mathews, Numerical Methods for Mathematics, Science and Engineering, 2							

AMT311β: Numerical Analysis (30 lecture hrs + 15 tutorial hrs); (Credit Value 2.5)

Course		Course Unit Title	Math	ematical Mode	elling III		
Unit number	ΙΜΤ312β	Lectures +Tutorial Discussions (hrs.)	45	Pre- requisites	None		
Credits	3	Practical (hrs.)					
Course Unit Objectives		awareness of the impo modelling techniques th discussed with example	rtance at invo s taken nsform	of mathematic lve differentia from physics, s as a tool to so	odelling III is to increase student es in the modern world. Variety of l equations and graph theory will be biology, chemistry, economics and olve differential equations and basic		
Learning O	utcomes	 solve differenti model practical the problems; demonstrate the apply the graph problems. 	al equa proble basic theory	tions using La ms that involv techniques of § knowledge to	solve some network optimization		
Course Con	tent	Solution of Linear Differential Equations by Laplace Transforms, Mathematical Modelling through Graphs, Mathematical Modelling Through Calculus of Variations and Dynamic Programming or Special Topics and/or Project, Stochastic Modelling, A survey on Ancient Sri Lankan Science and Technological Methods, Topics in Mathematical Modelling of Life Environmental relationships.					
Methods of learning	teaching and	Lectures, class discussi	on, tuto	rial discussion	1.		
Method of A	Assessment	Continuous assessment -20% End Semester Examination -80%					
References		 Mathematical Modelling, by J.N. Kapur Graph Theory and Applications, by L.R. Foulds An Introduction to Differential Equations and Their Applications, by S. J. Farlow 					

AMT312β: Mathematical Modelling III (30 lecture hrs + 15 tutorial hrs); (Credit Value 2.5)

Course Unit Code	ΑΜΤ313β	Course Unit Title	Mathematical N	lethods in Physics	and Engineering
Credits	2.5	Lectures / Tutorials (Hrs)	Tutorial(Hrs)	Independent learning (Hrs)	Pre-requisites
Notional hours	125	30	15	80	GCE (A/L) Combined Mathematics
Objectives		 Objectives of this cou and experience of Laplace transforms Systems Fourier series (FS) 	ations of function	as and their applica	tions in Dynamical
Learning O	utcomes	function	s for the existence sformations of co prmation operator nt types of function LT) and study the function. e ODEs and PDE	e of Laplace Transformmon functions a c. ons. e techniques in find	C
Course Con	tent	Laplace Transformatic Bessel functions and ODEs and PDEs, Hea	their Laplace tra	nsformations, App	olications in solving
	-	learning: Teaching:Leo paration for lectures/tuto			
(25hrs), refe	rring library b	ooks/Internet sources (1			inity, noniework
	Asses: Mid se d Examinatio	mester Tests: 20% n - 80 %			
References:					

AMT313β: Mathematical Methods in Physics and Engineering-I (30 lecture hrs + 15 tutorial hrs)

- Laplace Transforms. Murray R. Spiegel,
- Integral Transforms, M. D. Raisinghania,
- An introduction to Laplace Transforms and Fourier series, Dyke, P.P.G.
- Advanced Engineering Mathematics, H. K. Dass

Course Unit ΙΜΤ313β		Course Unit Title	Appli	ed Statistics II			
Unit number	ΑΜΤ314β	Lectures (hrs.)	30	Pre-	ΙΜΤ224β		
Credits	2.5	Practical (hrs.)		requisites	ΑΜΤ224β		
Course Unit Objectives	:	The objectives of this of hypothesis testing an			de the students with the knowledge on parametric tests.		
Learning O	utcomes	 apply the releving develop the known and statistical the statistical	ply the ant non owledge ests.	suitable param parametric tes e of decision r	ould be able to netric test for the real problems. t for the real problems. naking based on the test hypothesis nean and two population means		
Course Con	tent	 variance, Linear model Test statistics and rejec The population regress of variance for regressi Non parametric tests Smirnov test, Sign test two sample runs test), I 	s for an tion rul ssion: F on : Chi-S , Mann- Kruskal	nalysis of varia es Formulating hy Equare test, Te -Whitney U-te -Walis test	n means: Introduction to analysis of ance, variability as sum of squares, pothesis about regression, Analysis est of independence, Kolmogorov- st, Runs test (one sample runs test,		
Methods of learning	teaching and	Lectures, tutorial, group discussion, problem solving, reading materials					
Method of A	Assessment	Continuous assessmer End Semester Examin					
References		Introductory sta	atistics, ics and	Prem S. Mann Probability for	arry J. Kitchens ¹ engineers, Douglas C.		

AMT314 β : Applied Statistics-II (30 lecture hrs + 15 tutorial hrs); (Credit Value 2.5)

Applied Mathematics Level III - Semester II

Refer the Optional course units offered by the department of Mathematics for Level III- Semester II, for details.

Level III - Semester II The optional course units offered by the Department of Mathematics for level III - Semester II for the 2018-2019 Academic year

Course	MAT322	Course Unit Title	Comp	lex Variables		
Unit number	β	Lectures (hrs.)	30	Pre- requisites	None	
Credits	2.5	Practical (hrs.)				
Course Unit Objectives		involving compprovide students	nts to th with nec lex nun s with t	e Complex Nu cessary knowle obers and funct ools for integra	dge and skills to enable them to hand	
Learning Ou	ıtcomes	 operations with c explain the concellinear) and sketch discuss the condidifferentiable, an integrate complexitheorems and use definite integrals 	of com omplex pt of tr associ tion(s) alytic a c functi those c of real	plex variable a numbers. ansformation in ated diagrams. for a complex y nd/or harmonic ons on simple complex integr functions.	and carry out basic mathematical n a complex space (linear and non- variable function to be	
Course Cont	ent	functions, Cauchy-Rien Cauchy's integral form derivatives of complex f Singular points of comp	nann eo ila, Ext functior lex fun	uations, Anal tension of Cau is, Taylor's and ctions, Residu	ytic functions, Cauchy's theorem, achy's integral formula for finding d Laurent's series, Classification of e of a complex function, Cauchy's rigonometric functions on real line	
Methods of t and learning	-	Through lectures and tuto	rial dis	cussions.		
Method of A	ssessment	Continuous assessment20%End Semester Examination80%				
References		 Theory and problems mapping and its applic A guide to complex va 	ations l	by Spiegel, Mu	•	

MAT322β: Complex Variables (30 lecture hrs + 15 tutorial hrs), Op. (Credit Value 2.5)

Course Unit	ΜΑΤ324β	Course Unit Title	Mathematical Mo	dels in Ecology			
number		Lectures (Hr)	30	GPA/NGPA	GPA		
Credits	2.5	Tutorials (Hr)	15				
	1	The objectives of this c	ourse unit are to provi	de students a knowledg	e		
Objective	s	about dynamical system					
			ium states of a dynam				
			of a dynamical system	l			
		• about population dy	mamics				
		After successfully com	pleting this course, stu	idents will be able to			
 Learning Outcomes Apply the knowledge on linear and nonlinear Dy mathematical problems Find the stability of the equilibrium points of dyr Solve problems on population dynamics 					s to solve		
Course C	ontent	 Introduction to Dyn Linear Dynamical Stability, Ratios an Nonlinear Dynamic Population Dynamic Nonlinear Growth 	namical Systems, Ecol Systems: Analysis of I d Proportional Change cal Systems: Introduct ics: Introduction to pop	Dynamical systems, Equ e. ion, Stability, Web Ana pulation Growth, Logist pproach to Harvesting,	uilibrium lysis. ic Modei		
Method of and learn	f teaching ing	Conducting Lecture and	d Tutorial classes				
Method o	f	Mid semester examination – 20%					
Assessme	Endsemester examination- 80%						
References Mathematical Modelling in Ecology: A Workbook for Students, Jef. 1989					ries, C.,		

MAT324β: Mathematical Models in Ecology (30 lecture hrs + 15 tutorial hrs), Op. (Credit Value 2.5)

Course	MAT	Course Unit Title	Introduction to) Financia	I Mathematics
Unit Code	327β	Lectures (Hr)	1	45	Pre- requisites
Credits	2.5	Lab (Hr)			requisites
Objectives		 The objective of this course unit are enhance the basic knowled give deep understanding of provide some ideas of Asse discuss some real world ap 	ge of traditional n Eannuities, loan re et Liability Manag	payment, gement.	bonds
Learning Outcomes After successfully completing this course students should in distinguish different types of interest rates that car calculate annuities and bond prices and apply these identify possible methods in loan repayment and the explain concepts like duration, convexity and immuliability management.					used in real world problems accepts in real applications applications
Course Con	tent	 Introduction: Time Value of Mone Future Value, Accumulation Functi and Equation of Value. Annuities: Immediate, Due, Time I Annuities, and Reinvestment Probl Loan Repayment: Amortization, H Sinking Funds, Net Interest, and Ca Bonds: Face value, Par value, Coup Formula, Amortization of Premium Price, and True Price. Yield Structure of Interest Rate: Time/Dollar Weighted Rates, Portff Term Structure Interest Rates: T Curve, and Forward Rate. Asset Liability Management, Dun Duration, Convexity, Immunization 	ion, Discount Rate Lines, Perpetuities ems. Prospective/Retros apitalization of Int pon rate, Redempt a/Discount, Callab Internal Rate of R folio Method, and ferm Structure of I ration and Immu	e, Continu s, Continu pective M erest. tion Value le Bond, F eturn, Cas Net Presen interest Ra nization :	ous Interest, Force of Interest, ous Annuities, Variable fethods, Instalment Loan, , Bond Price, Makeham's Price-Plus Accrued, Market sh Flows, Borrowing Projects, nt Value. Ites, Risk Free Rates, Yield Assets, Liabilities Management,
Method of to and learning	0	Lectures and Practical sessions			
Method of Assessment		Continuous assessment -20% End Semester Examination -80%			
References Actuarial Mathematics, Newton L. Bowers, JR, Hans U Gerber, James C Hickman, Donald A Jone The Society of Actuaries, 1993 Models for Quantifying Risk, Second Edition, Robin Cunningham, Thomas Herzog, Richard L. Lo					

MAT327 β :Introduction to Financial Mathematics (30 lecture hrs + 15 tutorial hrs) (Credit Value 2.5)

IMT321β: Applied Algebra (Algebraic Data Encryption & Decryption Methods) (30 lec- ture hrs + 15 tutorial hrs), (Credit Value 2.5)

Course Unit	IMT 321β	Course Unit Title	Appli Meth	ied Algebra (Algebraic Data Encryption and Decryption ods)					
number		Lectures (hrs.)	45	Pre- requisites	MAT111β, MAT211β,MAT221β				
Credits	2.5	Practical (hrs.)		requisites	······				
Course Unit Objectives		The objectives of this course unit isto introduce applications of pure mathematics particularly Algebra and Number Theory to real world problems such as cryptography and coding theory							
Learning Outcomes		 On completion of the course unit, students should be able to explain basic cryptographic systems and mathematics behind them. identify basic ideas for communication channels and data transmission describe basic notions such as the notion of distance, error detection, error correction, decoding and encoding. make use of some notions and results in the theory of finite fields fundamental to the theory of linear codes. use some preliminary facts from the theory of vector spaces and matrices over finite fields to describe linear codes as well as the generator and parity check matrices and to identify the concept of syndrome for decoding. identify Hamming, Golay, cyclic, BCH and Reed-Solomon codes. RSA Encryption Scheme: Raising integers to large powers to a given modulus, 'Egyptian 							
Course Content		exponentiation', Discussion of primality testing, The Little Fermat and Rabin tests, Implications for the RSA system, Verifying authenticity Topics in Rings and Fields: GF(p), Polynomials over a ring, The Primitive Element Theorem, RecurrentSequences, shift registers, The ideal and minimal polynomial of a sequence, Indexing polynomials. Congruence modulo a polynomial, Construction of Finite Fields, Construction of indexing polynomials, Cyclotomic polynomials, Factorizing polynomials over Finite Fields Error detection and correction in telecommunication: ISBN codes, The Hamming metric, The minimum distance of a code, Elementary bounds on the minimum distance of a code, Equivalence of codes, Parity checks, The sphere-packing bound, Reed-Muller codes, Linear Codes, Dual codes, The parity check matrix of a linear code, Syndrome decoding, The Hamming codes as cyclic codes, The BCH codes, Golay code.							
Methods of teaching and learning		Reading material, Lectures, Tutorial Classes, Discussion, Videos							
Method Assessmen	of t	Continuous assessment -20% End Semester Examination -80%							
References		 Introduction to finite fields and their applications, Rudolf Lidl and Harald Niederreiter A First course in coding theory, Richard Hill, Coding theory. A first course, San Ling & Chaoping Xing, Error-correcting codes, Franz Lemmermeyer Modern Cryptography- Applied Mathematics forEncryption and Information Security, Chuck Easttom 							

IMT324 β : Statistics with Computer Applications (30 lecture hrs + 15 tutorial hrs), Pre- requisite MAT225 β ,MAT313 β ,AMT314 β , IMT313 β Op.

Course Unit Code	IMT324β	Course Unit Title	Statistics with Computer Applications						
		Lectures (Hr)		15	Pre- requisites	MAT225β			
Credits	2.5	Lab (Hr)		30		, AMT314 or IMT313 β			
Objectives		 The objectives of this course unit are to introduce and explain the important ideas in practical statistics, so that students will know when to apply various statistical methods, understand the associated problems and pitfalls 							
Learning Outcomes		 After completing this course unit successfully, students should be able to: suggest methods to obtain relevant data, summarize low-dimensional data sets, both graphically and numerically and identify the pattern of the given data set and apply the statistical techniques according to that, for a given practical problem. 							
Course Content		 The following statistical problems will be solved with computers software: summarizing data (univariate, bivariate and multivariate) analysing one sample, two samples and more than two samples data sets. linear Regression and correlation. analysis of Categorical Data: Goodness-of-fit test, Test of independence, Test of homogeneity. 							
Method o and learn	f teaching ing	Lectures and Practical sessions							
Method of Assessment		End of semester practical Examination : 100%							
References		Basic Statistics and Data Analysis, Larry J. Kitchens							