Real Analysis III (MAT312 β)

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Chapter 5

Derivatives of Functions Defined Implicitly

Explicit function

A function in which the dependent variable can be written explicitly in terms of the independent variable.

Eg:

(a) $y=x^{3}+9$
(b) $y=\sqrt{4-x^{2}}$
(c) $y=\log _{5} x$

Implicit function

- A function or relation in which the dependent variable is not isolated on one side of the equation.
- Some implicit functions can be written explicitly.

■ Unfortunately, not every equation involving x and y can be solved explicitly for y.

Eg:

(a) $x^{2}+y^{2}=4$
(b) $y-x^{2}=13$
(c) $y^{5}+x^{4} y^{7}-2 x^{4} y+x^{5}=0$

Implicit differentiation of functions of one variable

■ We have seen how to differentiate functions of the form $y=f(x)$.

■ We also want to be able to differentiate functions that either can't be written explicitly in terms of x or the resulting function is too complicated to deal with.

- To do this we use implicit differentiation.
- Implicit differentiation is nothing more than a special case of the well-known chain rule for derivatives.

Implicit differentiation of functions of one variable

 Example(a) Find $\frac{d y}{d x}$ for $x^{2}+y^{2}=4$
(b) Find $\frac{d y}{d x}$ for $x^{2} y+y^{3} x=x^{3} y^{3}$

Implicit representation of the surface in 3 -space

- The equation $x^{2}+y^{2}+z^{2}-1=0$ represents the surface of a unit sphere center at the origin.
- It is an equation of the form

$$
F(x, y, z)=0 .
$$

- An equation like this is said to provide an implicit representation of the surface.

Implicit representation of the surface in 3-space

 Cont...■ Sometimes it is possible to solve the equation $F(x, y, z)=0$ for one of the variables in terms of the other two, say for z in terms of x and y.

- This leads to one or more equations of the form

$$
z=f(x, y)
$$

- For the sphere we have two solution,

$$
z=\sqrt{1-x^{2}-y^{2}} \quad \text { and } \quad z=-\sqrt{1-x^{2}-y^{2}}
$$

one representing the upper hemisphere, the other the lower hemisphere.

Implicit differentiation of functions of two variables

■ In the general case it may not be an easy matter to obtain an explicit formula for z in terms of x and y.

■ For example, there is no easy method for solving for z in the equation $y^{2}+x z+z^{2}-e^{z}-4=0$.

■ Nevertheless, a judicious use of the chain rule makes it possible to deduce various properties of the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ without an explicit knowledge of $f(x, y)$.

- The procedure is described in this Chapter.

Implicit differentiation of functions of two variables

 Cont...- We assume that there is a function $f(x, y)$ such that

$$
\begin{equation*}
F[x, y, f(x, y)]=0 \tag{1}
\end{equation*}
$$

for all (x, y) in some open set S, although we may not have explicit formula for calculating $f(x, y)$.

- We describe this by saying that the equation $F(x, y, z)=0$ defines z implicitly as a function of x and y, and we write

$$
z=f(x, y)
$$

Implicit differentiation of functions of two variables

 Cont...■ Now we introduce an auxiliary function g defined on S as follows:

$$
g(x, y)=F[x, y, f(x, y)] .
$$

■ Equation (1) states that $g(x, y)=0$ on S; hence the partial derivatives $\partial g / \partial x$ and $\partial g / \partial y$ are also 0 on S.

Implicit differentiation of functions of two variables

 Cont...- But we can also compute these partial derivatives by the chain rule.
- To do this we write

$$
\begin{gathered}
g(x, y)=F\left[u_{1}(x, y), u_{2}(x, y), u_{3}(x, y)\right] \\
\text { where } u_{1}(x, y)=x, u_{2}(x, y)=y \text {, and } u_{3}(x, y)=f(x, y)
\end{gathered}
$$

Implicit differentiation of functions of two variables

Cont...

The chain rule gives us the formulas

$$
\frac{\partial g}{\partial x}=D_{1} F \frac{\partial u_{1}}{\partial x}+D_{2} F \frac{\partial u_{2}}{\partial x}+D_{3} F \frac{\partial u_{3}}{\partial x}
$$

and

$$
\frac{\partial g}{\partial y}=D_{1} F \frac{\partial u_{1}}{\partial y}+D_{2} F \frac{\partial u_{2}}{\partial y}+D_{3} F \frac{\partial u_{3}}{\partial y}
$$

where each partial derivative $D_{k} F$ is to be evaluated at $(x, y, f(x, y))$.

Implicit differentiation of functions of two variables

Cont...

Since we have

$$
\frac{\partial u_{1}}{\partial x}=1, \frac{\partial u_{2}}{\partial x}=0, \frac{\partial u_{3}}{\partial x}=\frac{\partial f}{\partial x} \text { and } \frac{\partial g}{\partial x}=0
$$

the first of the foregoing equations becomes

$$
D_{1} F+D_{3} F \frac{\partial f}{\partial x}=0
$$

Solving this for $\partial f / \partial x$ we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial x}=-\frac{D_{1} F[x, y, f(x, y)]}{D_{3} F[x, y, f(x, y)]} \tag{2}
\end{equation*}
$$

at those points at which $D_{3} F[x, y, f(x, y)] \neq 0$.

Implicit differentiation of functions of two variables

Cont...

By a similar arguments we obtain a corresponding formula for $\partial f / \partial y$:

$$
\begin{equation*}
\frac{\partial f}{\partial y}=-\frac{D_{2} F[x, y, f(x, y)]}{D_{3} F[x, y, f(x, y)]} \tag{3}
\end{equation*}
$$

at those points at which $D_{3} F[x, y, f(x, y)] \neq 0$.
These formulas are usually written more briefly as follows:

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =-\frac{\partial F / \partial x}{\partial F / \partial z} \\
\frac{\partial f}{\partial y} & =-\frac{\partial F / \partial y}{\partial F / \partial z}
\end{aligned}
$$

Example 1

Assume that the equation $y^{2}+x z+z^{2}-e^{z}-c=0$ defines z as a function of x and y, say $z=f(x, y)$. Find a value of the constant c such that $f(0, e)=2$, and compute the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ at the point $(x, y)=(0, e)$.

Example 1

Solution

When $x=0, y=e$, and $z=2$, the equation becomes
$e^{2}+4-e^{2}-c=0$, and this is satisfied by $c=4$. Let $F(x, y, z)=y^{2}+x z+z^{2}-e^{z}-4$. From (2) and (3) we have

$$
\frac{\partial f}{\partial x}=-\frac{z}{x+2 z-e^{z}}, \quad \frac{\partial f}{\partial y}=-\frac{2 y}{x+2 z-e^{z}}
$$

When $x=0, y=e$, and $z=2$ we find $\partial f / \partial x=2 /\left(e^{2}-4\right)$ and $\partial f / \partial y=2 e /\left(e^{2}-4\right)$.

Note that we were able to compute the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ using only the value of $f(x, y)$ at the single point $(0, e)$.

Example 2

Past paper 2013

(i) Consider a surface in 3-space is described by the equation $F(x, y, z)=0$, where $z=f(x, y)$ is implicitly defined as a function of x and y. Write down the expressions for $\partial z / \partial x$ and $\partial z / \partial y$.
(ii) Suppose that

$$
\sin x y+\sin y z+\sin z x=1
$$

defines the variable z as a function of x and y. Then find $\partial z / \partial x$ and $\partial z / \partial y$.

Example 2
 Solution

(i)

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =-\frac{\partial F / \partial x}{\partial F / \partial z} \\
\frac{\partial f}{\partial y} & =-\frac{\partial F / \partial y}{\partial F / \partial z}
\end{aligned}
$$

Example 2
 Solution

(ii)

$$
\begin{aligned}
F(x, y, z) & =\sin x y+\sin y z+\sin z x-1 \\
\frac{\partial F}{\partial x} & =y \cos x y+z \cos z x \\
\frac{\partial F}{\partial z} & =y \cos y z+x \cos z x \\
\frac{\partial F}{\partial y} & =x \cos x y+z \cos y z \\
\frac{\partial f}{\partial x} & =-\frac{y \cos x y+z \cos z x}{y \cos y z+x \cos z x} \\
\frac{\partial f}{\partial y} & =-\frac{x \cos x y+z \cos y z}{y \cos y z+x \cos z x}
\end{aligned}
$$

Theorem (5.1)

Implicit differentiation of functions of more than two variables
Let F be a scalar field differentiable on an open set \mathbb{T} in \mathbb{R}^{n}.
Assume that the equation

$$
F\left(x_{1}, \ldots, x_{n}\right)=0
$$

defines x_{n} implicitly as a differentiable function of x_{1}, \ldots, x_{n-1}, say

$$
x_{n}=f\left(x_{1}, \ldots, x_{n-1}\right)
$$

for all points $\left(x_{1}, \ldots, x_{n-1}\right)$ in some open set \mathbf{S} in \mathbb{R}^{n-1}. Then for each $k=1,2, \ldots, n-1$ the partial derivative $D_{k} f$ is given by the formula

$$
\begin{equation*}
D_{k} f=-\frac{D_{k} F}{D_{n} F} \tag{4}
\end{equation*}
$$

at those points at which $D_{n} F \neq 0$. The partial derivatives $D_{k} F$ and $D_{n} F$ which appear in (4) are to be evaluated at the point $\left(x_{1}, x_{2}, \ldots, x_{n-1}, f\left(x_{1}, \ldots, x_{n-1}\right)\right)$.

Two surfaces having implicit representations

- Suppose we have two surfaces with the following implicit representations:

$$
\begin{equation*}
F(x, y, z)=0, \quad G(x, y, z)=0 . \tag{5}
\end{equation*}
$$

- If these surfaces intersects along a curve C, it may be possible to obtain a parametric representation of C by solving the two equations in (5) simultaneously for two of the variables in term of the third, say for x and y in terms of z.

Two surfaces having implicit representations

 Cont...■ Let us suppose that it is possible to solve for x and y and that solutions are given by the equations

$$
x=X(z), \quad y=Y(z)
$$

for all z in some open interval (a, b).

- Then when x and y are replaced by $X(z)$ and $Y(z)$ respectively, the two equations in (5) are identically satisfied.
- That is, we can write $F[X(z), Y(z), z]=0$ and $G[X(z), Y(z), z]=0$ for all z in (a, b).

Two surfaces having implicit representations

 Cont...- Again, by using the chain rule, we can compute the derivatives $X^{\prime}(z)$ and $Y^{\prime}(z)$ without an explicit knowledge of $X(z)$ and $Y(z)$.
- To do this we introduce new functions f and g by means of the equations

$$
f(z)=F[X(z), Y(z), z] \text { and } g(z)=G[X(z), Y(z), z] .
$$

Two surfaces having implicit representations

 Cont...■ Then $f(z)=g(z)=0$ for every z in (a, b) and hence the derivatives $f^{\prime}(z)$ and $g^{\prime}(z)$ are also zero on (a, b).

- By the chain rule these derivatives are given by the formula

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial F}{\partial x} X^{\prime}(z)+\frac{\partial F}{\partial y} Y^{\prime}(z)+\frac{\partial F}{\partial z} \\
g^{\prime}(z) & =\frac{\partial G}{\partial x} X^{\prime}(z)+\frac{\partial G}{\partial y} Y^{\prime}(z)+\frac{\partial G}{\partial z}
\end{aligned}
$$

Two surfaces having implicit representations

 Cont...- Since $f^{\prime}(z)$ and $g^{\prime}(z)$ are both zero we can determine $X^{\prime}(z)$ and $Y^{\prime}(z)$ by solving the following pair of simultaneous linear equations:

$$
\begin{aligned}
\frac{\partial F}{\partial x} X^{\prime}(z)+\frac{\partial F}{\partial y} Y^{\prime}(z) & =-\frac{\partial F}{\partial z} \\
\frac{\partial G}{\partial x} X^{\prime}(z)+\frac{\partial G}{\partial y} Y^{\prime}(z) & =-\frac{\partial G}{\partial z}
\end{aligned}
$$

- At those points at which the determinant of the system is not zero, these equations have a unique solution which can be expressed as follows, using Cramer's rule:

Two surfaces having implicit representations

 Cont...$$
X^{\prime}(z)=-\frac{\left|\begin{array}{ll}
\frac{\partial F}{\partial z} & \frac{\partial F}{\partial y} \tag{6}\\
\frac{\partial G}{\partial z} & \frac{\partial G}{\partial y}
\end{array}\right|}{\left|\begin{array}{ll}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{array}\right|}, \quad Y^{\prime}(z)=-\frac{\left|\begin{array}{ll}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial z} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial z}
\end{array}\right|}{\left|\begin{array}{ll}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{array}\right|}
$$

Two surfaces having implicit representations

Cont...

- The determinants which appear in (6) are determinants of Jacobian matrices and are called Jacobian determinants.
- A special notation is often used to denote Jacobian determinants.
- We write

$$
\frac{\partial\left(f_{1}, \ldots, f_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}=\operatorname{det}\left[\begin{array}{ccccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdot & \cdot & \frac{\partial f_{1}}{\partial x_{n}} \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
\cdot \dot{f}_{n} & \frac{\partial f_{n}}{\partial x_{1}} & \cdots & & \dot{\partial f_{n}} \\
\partial x_{2} & \cdot & \cdot & \frac{x_{n}}{\partial x_{n}}
\end{array}\right]
$$

Two surfaces having implicit representations

 Cont...In this notation, the formulas in (6) can be expressed more briefly in the form

$$
\begin{equation*}
X^{\prime}(z)=\frac{\partial(F, G) / \partial(y, z)}{\partial(F, G) / \partial(x, y)}, Y^{\prime}(z)=\frac{\partial(F, G) / \partial(z, x)}{\partial(F, G) / \partial(x, y)} . \tag{7}
\end{equation*}
$$

(The minus sign has been incorporated into the numerators by interchanging the columns)

Two surfaces having implicit representations

 Cont...- The method can be extended to treat more general situations in which m equations in n variables are given, where $n>m$ and we solve for m of the variables in terms of the remaining $n-m$ variables.
- The partial derivatives of the new functions so defined can be expressed as quotients of the Jacobian determinants, generalizing (7).

Example 1

Assume that the equation $g(x, y)=0$ determines y as a differentiable function of x, say $y=Y(x)$ for all x in some open interval (a, b). Express the derivative $Y^{\prime}(x)$ in terms of the partial derivatives of g.

Example 1

Solution

Let $G(x)=g[x, Y(x)]$ for x in (a, b). Then the equation $g(x, y)=0$ implies $G(x)=0$ in (a, b). By the chain rule we have

$$
G^{\prime}(x)=\frac{\partial g}{\partial x} \cdot 1+\frac{\partial g}{\partial y} Y^{\prime}(x)
$$

from which we obtain

$$
\begin{equation*}
Y^{\prime}(x)=-\frac{\partial g / \partial x}{\partial g / \partial y} \tag{8}
\end{equation*}
$$

at those points x in (a, b) at which $\partial g / \partial y \neq 0$. The partial derivatives $\partial g / \partial x$ and $\partial g / \partial y$ are given by the formulas $\partial g / \partial x=D_{1} g[x, Y(x)]$ and $\partial g / \partial y=D_{2} g[x, Y(x)]$.

Example 2

When y is eliminated from the two equations $z=f(x, y)$ and $g(x, y)=0$, the results can be expressed in the form $z=h(x)$. Express the derivative $h^{\prime}(x)$ in terms of the partial derivatives of f and g.

Example 2

Solution

Let us assume that the equation $g(x, y)=0$ may be solved for y in terms of x and that a solution is given by $y=Y(x)$ for all x in some open interval (a, b), Then the function h is given by the formula

$$
h(x)=f[x, Y(x)] \quad \text { if } x \in(a, b)
$$

Applying the chain rule we have

$$
h^{\prime}(x)=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} Y^{\prime}(x)
$$

Example 2

Solution \Rightarrow Cont...

Using Equation (8) of Example 1 we obtain the formula

$$
h^{\prime}(x)=\frac{\frac{\partial g}{\partial y} \frac{\partial f}{\partial x}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}}{\frac{\partial g}{\partial y}}
$$

The partial derivatives on the right are to be evaluated at the point $(x, Y(x))$. Note that the numerator can also be expressed as a Jacobian determinant, giving us

$$
h^{\prime}(x)=\frac{\partial(f, g) / \partial(x, y)}{\partial g / \partial y}
$$

Example 3

Let u be defined as a function of x and y by means of the equation

$$
\begin{equation*}
u=F(x+u, y u) \tag{9}
\end{equation*}
$$

Find $\partial u / \partial x$ and $\partial u / \partial y$ in terms of the partial derivatives of F.

Example 3

Solution

Suppose that $u=g(x, y)$ for all (x, y) in some open set S. Substituting $g(x, y)$ for u in the original equation we must have

$$
\begin{equation*}
g(x, y)=F\left[u_{1}(x, y), u_{2}(x, y)\right] \tag{10}
\end{equation*}
$$

where $u_{1}(x, y)=x+g(x, y)$ and $u_{2}(x, y)=y g(x, y)$. Now we hold y fixed and differentiate both sides of (10) with respect to x, using the chain rule on the right, to obtain

$$
\begin{equation*}
\frac{\partial g}{\partial x}=D_{1} F \frac{\partial u_{1}}{\partial x}+D_{2} F \frac{\partial u_{2}}{\partial x} \tag{11}
\end{equation*}
$$

Example 3

But $\partial u_{1} / \partial x=1+\partial g / \partial x$, and $\partial u_{2} / \partial x=y \partial g / \partial x$. Hence (11) becomes

$$
\frac{\partial g}{\partial x}=D_{1} F \cdot\left(1+\frac{\partial g}{\partial x}\right)+D_{2} F \cdot\left(y \frac{\partial g}{\partial x}\right) .
$$

Solving this equation for $\partial g / \partial x$ (and writing $\partial u / \partial x$ for $\partial g / \partial x$) we obtain

$$
\frac{\partial u}{\partial x}=\frac{-D_{1} F}{D_{1} F+y D_{2} F-1} .
$$

Example 3

Solution \Rightarrow Cont...

In a similar way we find
$\frac{\partial g}{\partial y}=D_{1} F \frac{\partial u_{1}}{\partial y}+D_{2} F \frac{\partial u_{2}}{\partial y}=D_{1} F \frac{\partial g}{\partial y}+D_{2} F\left(y \frac{\partial g}{\partial y}+g(x, y)\right)$.
This leads to the equation

$$
\frac{\partial u}{\partial y}=\frac{-g(x, y) D_{2} F}{D_{1} F+y D_{2} F-1}
$$

The partial derivatives $D_{1} F$ and $D_{2} F$ are to be evaluated at the point $(x+g(x, y), y g(x, y))$.

Example 4

When u is eliminated from the two equations $x=u+v$ and $y=u v^{2}$, we get an equation of the form $F(x, y, v)=0$ which defines v implicitly as a function of x and y, say $v=h(x, y)$. Prove that

$$
\frac{\partial h}{\partial x}=\frac{h(x, y)}{3 h(x, y)-2 x}
$$

and find a similar formula for $\partial h / \partial y$.

Example 4

Solution

Eliminating u from the given two equations, we obtain the relation

$$
x v^{2}-v^{3}-y=0
$$

Let F be the function defined by the equation

$$
F(x, y, v)=x v^{2}-v^{3}-y
$$

By using the two formulas we can write

$$
\begin{equation*}
\frac{\partial h}{\partial x}=-\frac{\partial F / \partial x}{\partial F / \partial v} \quad \text { and } \quad \frac{\partial h}{\partial y}=-\frac{\partial F / \partial y}{\partial F / \partial v} \tag{12}
\end{equation*}
$$

Example 4

Solution \Rightarrow Cont...
But $\partial F / \partial x=v^{2}, \partial F / \partial v=2 x v-3 v^{2}$, and $\partial F / \partial y=-1$. Hence the equation becomes

$$
\begin{aligned}
\frac{\partial h}{\partial x} & =-\frac{v^{2}}{2 x v-3 v^{2}} \\
& =-\frac{v}{2 x-3 v} \\
& =\frac{h(x, y)}{3 h(x, y)-2 x} . \\
\frac{\partial h}{\partial y} & =-\frac{-1}{2 x v-3 v^{2}} \\
& =\frac{1}{2 x h(x, y)-3 h^{2}(x, y)} .
\end{aligned}
$$

Exercise

Suppose that

$$
x^{2} y^{2} z^{3}+z x \sin y=5
$$

defines z as a function of x and y. Then find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Thank you!

