Real Analysis III (MAT312 β)

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Chapter 4

Derivatives of Functions of Several Variables II

Chapter 4
Section 4.1

Derivatives of Vector Fields

What is a vector field?

- Derivative theory for vector fields is a straightforward extension of that for scalar fields.

■ Let $\mathbf{f}: \mathbf{S} \rightarrow \mathbb{R}^{m}$ be a vector field defined on a subset \mathbf{S} of \mathbb{R}^{n}.

- Then \mathbf{f} consists of m scalar fields of n variables. That is,

$$
\mathbf{f}(\mathbf{a})=\left(f_{1}(\mathbf{a}), \ldots, f_{m}(\mathbf{a})\right) .
$$

■ In here each $f_{i}: \mathbf{S} \rightarrow \mathbb{R}$ is a scalar field, where $i=1, \ldots, m$.

Example

Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a vector field defined by

$$
\mathbf{f}(x, y)=\left(x^{2}+y^{2}, x^{2}-y^{2}, 2 x y\right)
$$

Then \mathbf{f} has three components as $f_{1}(x, y)=x^{2}+y^{2}$, $f_{2}(x, y)=x^{2}-y^{2}$, and $f_{3}(x, y)=2 x y$.

Definition

The derivative of a vector field

Let $\mathbf{f}: \mathbf{S} \rightarrow \mathbb{R}^{m}$ be a vector field defined on a subset \mathbf{S} of \mathbb{R}^{n}. If \mathbf{a} is an interior point of \mathbf{S} and if \mathbf{y} is any vector in \mathbb{R}^{n} we define the derivative $\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y})$ by the formula

$$
\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y})=\lim _{h \rightarrow 0} \frac{\mathbf{f}(\mathbf{a}+h \mathbf{y})-\mathbf{f}(\mathbf{a})}{h}
$$

whenever the limit exists. The derivative $\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y})$ is a vector in \mathbb{R}^{m}.

Differentiability in component wise

Let f_{k} denote the $k^{\text {th }}$ component of \mathbf{f}. We note that the derivative $\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y})$ exists if and only if $f_{k}^{\prime}(\mathbf{a} ; \mathbf{y})$ exists for each $k=1,2, \ldots, m$ in which case we have

$$
\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y})=\left(f_{1}^{\prime}(\mathbf{a} ; \mathbf{y}), \ldots, f_{m}^{\prime}(\mathbf{a} ; \mathbf{y})\right)=\sum_{k=1}^{m} f_{k}^{\prime}(\mathbf{a} ; \mathbf{y}) \mathbf{e}_{k}, \rightarrow(\mathrm{~A})
$$

where \mathbf{e}_{k} is the $k^{\text {th }}$ unit coordinate vector.

The total derivative of a vector field

We say that \mathbf{f} is differentiable at an interior point a if there is a linear transformation

$$
\mathbf{T}_{\mathbf{a}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

such that

$$
\begin{equation*}
\mathbf{f}(\mathbf{a}+\mathbf{v})=\mathbf{f}(\mathbf{a})+\mathbf{T}_{\mathbf{a}}(\mathbf{v})+\|\mathbf{v}\| \mathbf{E}(\mathbf{a}, \mathbf{v}) \tag{1}
\end{equation*}
$$

where $\mathbf{E}(\mathbf{a}, \mathbf{v}) \rightarrow \mathbf{0}$ as $\mathbf{v} \rightarrow \mathbf{0}$. The first order Taylor formula (1) is to hold for all \mathbf{v} with $\|\mathbf{v}\|<r$ for some $r>0$. The term $\mathbf{E}(\mathbf{a}, \mathbf{v})$ is a vector in \mathbb{R}^{m}. The linear transformation $\mathbf{T}_{\mathbf{a}}$ is called the total derivative of \mathbf{f} at \mathbf{a}.

The total derivative of a vector field Cont...

■ For scalar fields we proved that $T_{\mathrm{a}}(\mathbf{y})$ is the dot product of the gradient vector $\nabla f(\mathbf{a})$ with \mathbf{y}.

■ For vector fields we will prove that $\mathbf{T}_{\mathbf{a}}(\mathbf{y})$ is a vector whose $k^{\text {th }}$ component is the dot product $\nabla f_{k}(\mathbf{a}) \cdot \mathbf{y}$.

Theorem (4.1)

Assume \mathbf{f} is differentiable at a with total derivative $\mathbf{T}_{\mathbf{a}}$. Then the derivative $\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y})$ exists for every \mathbf{a} in \mathbf{R}^{n}, and we have

$$
\begin{equation*}
\mathbf{T}_{\mathbf{a}}(\mathbf{y})=\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y}) \tag{2}
\end{equation*}
$$

Moreover, if $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right)$ and if $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$, we have

$$
\begin{equation*}
\mathbf{T}_{\mathrm{a}}(\mathbf{y})=\sum_{k=1}^{m} \nabla f_{k}(\mathbf{a}) \cdot \mathbf{y} \mathbf{e}_{k}=\left(\nabla f_{1}(\mathbf{a}) \cdot \mathbf{y}, \ldots, \nabla f_{m}(\mathbf{a}) \cdot \mathbf{y}\right) \tag{3}
\end{equation*}
$$

Theorem (4.1)

Proof

We argue as in the scalar case. If $\mathbf{y}=\mathbf{0}$, then $\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y})=\mathbf{0}$ and $\mathbf{T}_{\mathbf{a}}(\mathbf{0})=\mathbf{0}$. Therefore we can assume that $\mathbf{y} \neq \mathbf{0}$. Taking $\mathbf{v}=h \mathbf{y}$ in the Taylor formula (1) we have

$$
\begin{aligned}
\mathbf{f}(\mathbf{a}+\mathbf{v}) & =\mathbf{f}(\mathbf{a})+\mathbf{T}_{\mathbf{a}}(\mathbf{v})+\|\mathbf{v}\| \mathbf{E}(\mathbf{a}, \mathbf{v}) \\
\mathbf{f}(\mathbf{a}+\mathbf{h y}) & =\mathbf{f}(\mathbf{a})+\mathbf{T}_{\mathbf{a}}(h \mathbf{y})+\|h \mathbf{y}\| \mathbf{E}(\mathbf{a}, \mathbf{v}) \\
\mathbf{f}(\mathbf{a}+\mathbf{h y})-\mathbf{f}(\mathbf{a}) & =h \mathbf{T}_{\mathbf{a}}(\mathbf{y})+|h|\|\mathbf{y}\| \mathbf{E}(\mathbf{a}, \mathbf{v}) \\
\lim _{h \rightarrow 0} \frac{\mathbf{f}(\mathbf{a}+\mathbf{h} \mathbf{y})-\mathbf{f}(\mathbf{a})}{h} & =\lim _{h \rightarrow 0} \frac{h \mathbf{T}_{\mathbf{a}}(\mathbf{y})}{h}+\lim _{h \rightarrow 0} \frac{|h|\|\mathbf{y}\| \mathbf{E}(\mathbf{a}, \mathbf{v})}{h} \\
\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y}) & =\mathbf{T}_{\mathbf{a}}(\mathbf{y})
\end{aligned}
$$

Theorem (4.1)

To prove (3) we simply note that

$$
\begin{aligned}
\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y}) & =\sum_{k=1}^{m} f_{k}^{\prime}(\mathbf{a} ; \mathbf{y}) \mathbf{e}_{k} \quad(\operatorname{From}(\mathrm{~A})) \\
& =\sum_{k=1}^{m} \nabla f_{k}(\mathbf{a}) \cdot \mathbf{y} \mathbf{e}_{k}=\left(\nabla f_{1}(\mathbf{a}) \cdot \mathbf{y}, \ldots, \nabla f_{m}(\mathbf{a}) \cdot \mathbf{y}\right) \\
\mathbf{T}_{\mathbf{a}}(\mathbf{y}) & =\mathbf{f}^{\prime}(\mathbf{a} ; \mathbf{y}) \quad(\text { From }(2)) \\
\mathbf{T}_{\mathbf{a}}(\mathbf{y}) & =\sum_{k=1}^{m} \nabla f_{k}(\mathbf{a}) \cdot \mathbf{y e}_{k}=\left(\nabla f_{1}(\mathbf{a}) \cdot \mathbf{y}, \ldots, \nabla f_{m}(\mathbf{a}) \cdot \mathbf{y}\right) .
\end{aligned}
$$

Hence the result.

The Jacobian matrix of \mathbf{f} at \mathbf{a}

Equation (3) can also be written more simply as a matrix product,

$$
\mathbf{T}_{\mathbf{a}}(\mathbf{y})=D \mathbf{f}(\mathbf{a}) \mathbf{y}
$$

where $D \mathbf{f}(\mathbf{a})$ is the $m \times n$ matrix whose $k^{\text {th }}$ row is $\nabla f_{k}(\mathbf{a})$, and where \mathbf{y} is regarded as an $n \times 1$ column matrix. The matrix $D \mathbf{f}(\mathbf{a})$ is called the Jacobian matrix of \mathbf{f} at \mathbf{a}. Its $k j$ entry is the partial derivative $D_{j} f_{k}(\mathbf{a})$. Thus, we have

$$
D \mathbf{f}(\mathbf{a})=\left[\begin{array}{cccc}
D_{1} f_{1}(\mathbf{a}) & D_{2} f_{1}(\mathbf{a}) & \ldots & D_{n} f_{1}(\mathbf{a}) \\
D_{1} f_{2}(\mathbf{a}) & D_{2} f_{2}(\mathbf{a}) & \ldots & D_{n} f_{2}(\mathbf{a}) \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
D_{1} f_{m}(\mathbf{a}) & D_{2} f_{m}(\mathbf{a}) & \ldots & D_{n} f_{m}(\mathbf{a})
\end{array}\right]
$$

The Jacobian matrix of \mathbf{f} at \mathbf{a}

Cont...

- The Jacobian matrix $\operatorname{Df}(\mathbf{a})$ is defined at each point where the $m n$ partial derivatives $D_{j} f_{k}(\mathbf{a})$ exists.
- The total derivative $\mathbf{T}_{\mathbf{a}}$ is also written as $\mathbf{f}^{\prime}(\mathbf{a})$.
- The derivative $\mathbf{f}^{\prime}(\mathbf{a})$ is a linear transformation; the Jacobian $D \mathbf{f}(\mathbf{a})$ is a matrix representation for this transformation.

The Jacobian matrix of \mathbf{f} at \mathbf{a}

The first-order Taylor formula takes the form

$$
\begin{equation*}
\mathbf{f}(\mathbf{a}+\mathbf{v})=\mathbf{f}(\mathbf{a})+\mathbf{f}^{\prime}(\mathbf{a})(\mathbf{v})+\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v}), \tag{4}
\end{equation*}
$$

where $\mathbf{E}(\mathbf{a}, \mathbf{v}) \rightarrow \mathbf{0}$ as $\mathbf{v} \rightarrow \mathbf{0}$. This resembles the one-dimensional Taylor formula. To compute the components of the vector $\mathbf{f}^{\prime}(\mathbf{a})(\mathbf{v})$ we can use the matrix product $D \mathbf{f}(\mathbf{a}) \mathbf{v}$ or formula (3) of Theorem (4.1).

Example

Calculate the Jacobian matrix of the following functions:
(a) $\mathbf{f}(x, y)=\left(x^{2} y^{3}, 5 x-3 y^{2}-1\right)$
(b) $\mathbf{g}(x, y)=\left(e^{x}+e^{y}, e^{x+y}\right)$

Example

Solution

(a)

$$
\begin{aligned}
D \mathbf{f}(x, y) & =\left[\begin{array}{ll}
D_{1} f_{1}(x, y) & D_{2} f_{1}(x, y) \\
D_{1} f_{2}(x, y) & D_{2} f_{2}(x, y)
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 x y^{3} & 3 y^{2} x^{2} \\
5 & -6 y
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
D \mathbf{g}(x, y) & =\left[\begin{array}{ll}
D_{1} g_{1}(x, y) & D_{2} g_{1}(x, y) \\
D_{1} g_{2}(x, y) & D_{2} g_{2}(x, y)
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{x} & e^{y} \\
e^{x+y} & e^{x+y}
\end{array}\right]
\end{aligned}
$$

Theorem (4.2)
Differentiability implies continuity

If a vector field \mathbf{f} is differentiable at \mathbf{a}, then \mathbf{f} is continuous at a.

Theorem (4.2)

Differentiability implies continuity \Rightarrow Proof

As in the scalar case, we use the Taylor formula to prove this theorem.

If we let $\mathbf{v} \rightarrow \mathbf{0}$ in the first-order Taylor formula,

$$
\lim _{\mathbf{v} \rightarrow \mathbf{0}} \mathbf{f}(\mathbf{a}+\mathbf{v})=\lim _{\mathbf{v} \rightarrow \mathbf{0}} \mathbf{f}(\mathbf{a})+\lim _{\mathbf{v} \rightarrow \mathbf{0}} \mathbf{f}^{\prime}(\mathbf{a})(\mathbf{v})+\lim _{\mathbf{v} \rightarrow \mathbf{0}}\|\mathbf{v}\| \mathbf{E}(\mathbf{a}, \mathbf{v})
$$

The error term $\|\mathbf{v}\| \mathbf{E}(\mathbf{a}, \mathbf{v}) \rightarrow \mathbf{0}$.
The linear part $\mathbf{f}^{\prime}(\mathbf{a})(\mathbf{v})$ also trends to $\mathbf{0}$ because linear transformations are continuous at $\mathbf{0}$.

This completes the proof.

Chapter 4

Chain Rule for Derivatives of Vector Fields

Theorem (4.3)

Chain rule

Let \mathbf{f} and \mathbf{g} be vector fields such that the composition $\mathbf{h}=\mathbf{f} \circ \mathbf{g}$ is defined in a neighborhood of a point \mathbf{a}. Assume that \mathbf{g} is differentiable at \mathbf{a}, with total derivative $\mathbf{g}^{\prime}(\mathbf{a})$. Let $\mathbf{b}=\mathbf{g}(\mathbf{a})$ and assume that \mathbf{f} is differentiable at \mathbf{b}, with total derivative $\mathbf{f}^{\prime}(\mathbf{b})$. Then \mathbf{h} is differentiable at \mathbf{a}, and the total derivative $\mathbf{h}^{\prime}(\mathbf{a})$ is given by

$$
\mathbf{h}^{\prime}(\mathbf{a})=\mathbf{f}^{\prime}(\mathbf{b}) \circ \mathbf{g}^{\prime}(\mathbf{a}),
$$

the composition of the linear transformations $\mathbf{f}^{\prime}(\mathbf{b})$ and $\mathbf{g}^{\prime}(\mathbf{a})$.

Matrix form of the chain rule

Let $\mathbf{h}=\mathbf{f} \circ \mathbf{g}$, where \mathbf{g} is differentiable at \mathbf{a} and \mathbf{f} if differentiable at $\mathbf{b}=\mathbf{g}(\mathbf{a})$. The chain rule states that

$$
\mathbf{h}^{\prime}(\mathbf{a})=\mathbf{f}^{\prime}(\mathbf{b}) \circ \mathbf{g}^{\prime}(\mathbf{a}) .
$$

We can express the chain rule in terms of the Jacobian matrices $D \mathbf{h}(\mathbf{a}), D \mathbf{f}(\mathbf{b})$, and $D \mathbf{g}(\mathbf{a})$ which represent the linear transformations $\mathbf{h}^{\prime}(\mathbf{a}), \mathbf{f}^{\prime}(\mathbf{b})$, and $\mathbf{g}^{\prime}(\mathbf{a})$, respectively.

Matrix form of the chain rule

 Cont...Since composition of linear transformations corresponds to multiplication of their matrices, we obtain

$$
\begin{equation*}
D \mathbf{h}(\mathbf{a})=D \mathbf{f}(\mathbf{b}) D \mathbf{g}(\mathbf{a}), \quad \text { where } \mathbf{b}=\mathbf{g}(\mathbf{a}) \tag{5}
\end{equation*}
$$

This is called the matrix form of the chain rule.

Matrix form of the chain rule

 Cont...It can also be written as a set of scalar equations by expressing each matrix in terms of its entries.

Suppose that $\mathbf{a} \in \mathbb{R}^{m}, \mathbf{b}=\mathbf{g}(\mathbf{a}) \in \mathbb{R}^{n}$, and $\mathbf{f}(\mathbf{b}) \in \mathbb{R}^{m}$.
Then $\mathbf{h}(\mathbf{a}) \in \mathbb{R}^{m}$ and we can write

$$
\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right), \mathbf{f}=\left(f_{1}, \ldots, f_{m}\right), \mathbf{h}=\left(h_{1}, \ldots, h_{m}\right)
$$

Matrix form of the chain rule

 Cont...Then $D \mathbf{h}(\mathbf{a})$ is an $m \times p$ matrix, $D \mathbf{f}(\mathbf{b})$ is an $m \times n$ matrix, and $D \mathbf{g}(\mathbf{a})$ is an $n \times p$ matrix, given by

$$
\begin{aligned}
D \mathbf{h}(\mathbf{a}) & =\left[D_{j} h_{i}(\mathbf{a})\right]_{i, j=1}^{m, p}, \\
D \mathbf{f}(\mathbf{b}) & =\left[D_{k} f_{i}(\mathbf{b})\right]_{i, k=1}^{m, n}, \\
D \mathbf{g}(\mathbf{a}) & =\left[D_{j} g_{k}(\mathbf{a})\right]_{k, j=1}^{n, p} .
\end{aligned}
$$

Matrix form of the chain rule

 Cont...The matrix equation (5) is equivalent to $m p$ scalar equations,
$D_{j} h_{i}(\mathbf{a})=\sum_{k=1}^{n} D_{k} f_{i}(\mathbf{b}) D_{j} g_{k}(\mathbf{a})$, for $i=1,2, \ldots, m$ and $j=1,2, \ldots, p$.
These equations express the partial derivatives of the components of \mathbf{h} in terms of the partial derivatives of the components of \mathbf{f} and g.

Example 1

Extended chain rule for scalar fields

Suppose f is a scalar field $(m=1)$. Then h is also a scalar field and there are p equations in the chain rule, one for each of the partial derivatives of h :

$$
D_{j} h(\mathbf{a})=\sum_{k=1}^{n} D_{k} f(\mathbf{b}) D_{j} g_{k}(\mathbf{a}), \text { for } j=1,2, \ldots, p
$$

The special case $p=1$ was already considered in the previous Chapter. In this case we get only one equation,

$$
h^{\prime}(\mathbf{a})=\sum_{k=1}^{n} D_{k} f(\mathbf{b}) g_{k}^{\prime}(\mathbf{a})
$$

Example 1

Extended chain rule for scalar fields \Rightarrow Cont...

Now take $p=2$ and $n=2$. Write $\mathbf{a}=(s, t)$ and $\mathbf{b}=(x, y)$. Then the components x and y are related to s and t by the equations

$$
x=g_{1}(s, t), \quad y=g_{2}(s, t)
$$

The chain rule gives a pair of equations for the partial derivatives of h :

$$
\begin{aligned}
& D_{1} h(s, t)=D_{1} f(x, y) D_{1} g_{1}(s, t)+D_{2} f(x, y) D_{1} g_{2}(s, t), \\
& D_{2} h(s, t)=D_{1} f(x, y) D_{2} g_{1}(s, t)+D_{2} f(x, y) D_{2} g_{2}(s, t)
\end{aligned}
$$

In the ∂-notation, this pair of equations is usually written as

$$
\begin{align*}
\frac{\partial h}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \tag{6}\\
\frac{\partial h}{\partial t} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \tag{7}
\end{align*}
$$

Example 2

Polar coordinates

The temperature of a thin plate is described by a scalar field f, the temperature at (x, y) being $f(x, y)$. Polar coordinates $x=r \cos \theta$, $y=r \sin \theta$ are introduced, and the temperature becomes a function of r and θ determined by the equation

$$
\varphi(r, \theta)=f(r \cos \theta, r \sin \theta)
$$

Express the partial derivatives $\partial \varphi / \partial r$ and $\partial \varphi / \partial \theta$ in terms of the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$.

Example 2

Polar coordinates \Rightarrow Cont...

We use the chain rule as expressed in Equations (6) and (7), writing (r, θ) instead of (s, t), and φ instead of h. The equations

$$
x=r \cos \theta, y=r \sin \theta
$$

gives us

$$
\frac{\partial x}{\partial r}=\cos \theta, \frac{\partial y}{\partial r}=\sin \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta, \frac{\partial y}{\partial \theta}=r \cos \theta
$$

Substituting these formulas in (6) and (7) we obatain

$$
\begin{align*}
\frac{\partial \varphi}{\partial r} & =\frac{\partial f}{\partial x} \cos \theta+\frac{\partial f}{\partial y} \sin \theta \tag{8}\\
\frac{\partial \varphi}{\partial \theta} & =-r \frac{\partial f}{\partial x} \sin \theta+r \frac{\partial f}{\partial y} \cos \theta \tag{9}
\end{align*}
$$

These are the required formulas for $\frac{\partial \varphi}{\partial r}$ and $\frac{\partial \varphi}{\partial \theta}$.

Example 3

Second-order partial derivatives

Refer to Example 2 and express the second-order partial derivatives $\frac{\partial^{2} \varphi}{\partial \theta^{2}}$ in terms of partial derivatives of f.

Example 3

Second-order partial derivatives \Rightarrow Cont...

We begin with the formula for $\frac{\partial \varphi}{\partial \theta}$ in (9) and differentiate with respect to θ, treating r as a constant. There are two terms on the right, each of which must be differentiated as a product. Thus we have

$$
\begin{align*}
\frac{\partial^{2} \varphi}{\partial \theta^{2}}= & -r \frac{\partial f}{\partial x} \frac{\partial(\sin \theta)}{\partial \theta}-r \sin \theta \frac{\partial}{\partial \theta}\left(\frac{\partial f}{\partial x}\right)+r \frac{\partial f}{\partial y} \frac{\partial(\cos \theta)}{\partial \theta} \\
& +r \cos \theta \frac{\partial}{\partial \theta}\left(\frac{\partial f}{\partial y}\right) \\
\frac{\partial^{2} \varphi}{\partial \theta^{2}}= & -r \cos \theta \frac{\partial f}{\partial x}-r \sin \theta \frac{\partial}{\partial \theta}\left(\frac{\partial f}{\partial x}\right)-r \sin \theta \frac{\partial f}{\partial y} \\
& +r \cos \theta \frac{\partial}{\partial \theta}\left(\frac{\partial f}{\partial y}\right) \tag{10}
\end{align*}
$$

Example 3

Second-order partial derivatives \Rightarrow Cont...

To compute the derivatives of $\partial f / \partial x$ and $\partial f / \partial y$ with respect to θ we must keep in mind that, as functions of r and $\theta, \partial f / \partial x$ and $\partial f / \partial y$ are composite functions given by

$$
\frac{\partial f}{\partial x}=D_{1} f(r \cos \theta, r \sin \theta) \text { and } \frac{\partial f}{\partial y}=D_{2} f(r \cos \theta, r \sin \theta)
$$

Therefore, thier derivatives with respect to θ must be determined by use of the chain rule. We again use (6) and (7) with f replaced by $D_{1} f$, to obtain

$$
\begin{aligned}
\frac{\partial}{\partial \theta}\left(\frac{\partial f}{\partial x}\right) & =\frac{\partial\left(D_{1} f\right)}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial\left(D_{1} f\right)}{\partial y} \frac{\partial y}{\partial \theta} \\
& =\frac{\partial^{2} f}{\partial x^{2}}(-r \sin \theta)+\frac{\partial^{2} f}{\partial y \partial x}(r \cos \theta)
\end{aligned}
$$

Example 3

Second-order partial derivatives \Rightarrow Cont...

Similarly, using (6) and (7) with f replaced by $D_{2} f$, we find

$$
\begin{aligned}
\frac{\partial}{\partial \theta}\left(\frac{\partial f}{\partial y}\right) & =\frac{\partial\left(D_{2} f\right)}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial\left(D_{2} f\right)}{\partial y} \frac{\partial y}{\partial \theta} \\
& =\frac{\partial^{2} f}{\partial x \partial y}(-r \sin \theta)+\frac{\partial^{2} f}{\partial y^{2}}(r \cos \theta)
\end{aligned}
$$

When these formulas are used in (10) we obtain

$$
\begin{aligned}
\frac{\partial^{2} \varphi}{\partial \theta^{2}}= & -r \cos \theta \frac{\partial f}{\partial x}+r^{2} \sin ^{2} \theta \frac{\partial^{2} f}{\partial x^{2}}-r^{2} \sin \theta \cos \theta \frac{\partial^{2} f}{\partial y \partial x} \\
& -r \sin \theta \frac{\partial f}{\partial y}-r^{2} \sin \theta \cos \theta \frac{\partial^{2} f}{\partial x \partial y}+r^{2} \cos ^{2} \theta \frac{\partial^{2} f}{\partial y^{2}}
\end{aligned}
$$

This is the required formula for $\frac{\partial^{2} \varphi}{\partial \theta^{2}}$.

Thank you!

