Real Analysis III (MAT312 β)

Department of Mathematics
 University of Ruhuna

A.W.L. Pubudu Thilan

Chapter 3

Derivatives of Functions of Several Variables I

Chapter 3

The Derivative of a Scalar Field with Respect to a Vector

Definition

The derivative of a single variable function

The derivative of the function $f(x)$ at the point x is given and denoted by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Why do we need a vector to get derivative of a scalar field?

■ Suppose $y=f(x)$. Then the derivative $f^{\prime}(x)$ is the rate at which y changes when we let x vary.

■ Since f is a function on the real line, so the variable can only increase or decrease along that single line.

- In one dimension, there is only one "direction" in which x can change.

Why do we need a vector to get derivative of a scalar field?

 Cont...- Given a function of two or more variables like $z=f(x, y)$, there are infinitely many different directions from any point in which the function can change.

■ We know that we can represent directions by using vectors.

- Derivative of a scalar field is the rate of change of the scalar field in a particular direction given by a vector.

Why do we need a vector to get derivative of a scalar field?

 Cont...- Let P is a point in the domain of $f(x, y)$ and vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, $\mathbf{v}_{\mathbf{3}}$, and $\mathbf{v}_{\mathbf{4}}$ represent possible directions in which we might want to know the rate of change of $f(x, y)$.
- Suppose we may want to know the rate at which $f(x, y)$ is changing along or in the direction of the vector, $\mathbf{v}_{\mathbf{3}}$, which would be the direction along the x-axis.

The derivative of a scalar field with respect to a vector Motivative example

- Suppose a person is at point \mathbf{a} in a heated room with an open window.
- Let $f(\mathbf{a})$ is the temperature at a point \mathbf{a}.
- If the person moves toward the window temperature will decrease, but if the person moves toward heater it will increase.

■ In general, the manner in which a field changes will depend on the direction in which we move away from a.

The derivative of a scalar field with respect to a vector Motivative example \Rightarrow Cont...

■ Let $f: \mathbf{S} \rightarrow \mathbb{R}$ be a scalar field where $\mathbf{S} \subseteq \mathbb{R}^{n}$ and let a be an interior point of \mathbf{S}.

- We are going to study about how the field changes as we move from a to a nearby point.

The derivative of a scalar field with respect to a vector Motivative example \Rightarrow Cont...

■ Suppose moving direction is given by the vector \mathbf{y}.

- That is suppose we move from a toward another point $\mathbf{a}+\mathbf{y}$ along the line segment joining \mathbf{a} and $\mathbf{a}+\mathbf{y}$.
- Each point on this segment has the form $\mathbf{a}+h \mathbf{y}$, where h is a real number.
- The distance from a to $\mathbf{a}+h \mathbf{y}$ is $\|h \mathbf{y}\|=|h|\|\mathbf{y}\|$.

The derivative of a scalar field with respect to a vector Motivative example \Rightarrow Cont...

- Since \mathbf{a} is an interior point of \mathbf{S}, there is an n-ball $\mathbf{B}(\mathbf{a} ; \mathbf{r})$ lying entirely in S.
- If h is chosen so that $|h|\|\mathbf{y}\|<r$, the segment from a to a + hy will lie in \mathbf{S}.

■ We keep $h \neq 0$ but small enough to guarantee that $\mathbf{a}+h \mathbf{y} \in \mathbf{S}$.

■ So, then from the difference quotient we have,

$$
\frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} .
$$

The derivative of a scalar field with respect to a vector Motivative example \Rightarrow Cont...

■ If we consider the above quotient, the numerator tells us how much the function changes when we move from a to $\mathbf{a}+h \mathbf{y}$.

- The quoteint itself is called the average rate of change of f over the line segmengnt joining a to $\mathbf{a}+h \mathbf{y}$.
- We are interested in the behavior of this quotient as $h \rightarrow 0$.
- This leads us to the following definition.

Definition

The derivative of a scalar field with respect to a vector

Given a scalar field $f: \mathbf{S} \rightarrow \mathbb{R}$, where $\mathbf{S} \subseteq \mathbb{R}^{n}$. Let a be an interior point of \mathbf{S} and let \mathbf{y} be an arbitrary point in \mathbb{R}^{n}. The derivative of f at a with respect to \mathbf{y} is denoted by the symbol $f^{\prime}(\mathbf{a} ; \mathbf{y})$ and is defined by the equation

$$
\begin{equation*}
f^{\prime}(\mathbf{a} ; \mathbf{y})=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} \tag{1}
\end{equation*}
$$

when the limit on the right exists.

Example 1

If $\mathbf{y}=\mathbf{0}$, the difference quotient (1) is 0 for every $h \neq 0$, so $f^{\prime}(\mathbf{a} ; \mathbf{0})$ always exists and equals 0 .

$$
\begin{aligned}
f^{\prime}(\mathbf{a} ; \mathbf{y}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} \\
f^{\prime}(\mathbf{a} ; \mathbf{0}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{0})-f(\mathbf{a})}{h} \\
f^{\prime}(\mathbf{a} ; \mathbf{0}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a})-f(\mathbf{a})}{h} \\
& =0 .
\end{aligned}
$$

Example 2

Derivative of a linear transformation

If $f: \mathbf{S} \rightarrow \mathbb{R}$ is a linear transformation, then
$f(\mathbf{a}+h \mathbf{y})=f(\mathbf{a})+h f(\mathbf{y})$. From the definition we have,

$$
\begin{aligned}
f^{\prime}(\mathbf{a} ; \mathbf{y}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} \\
f^{\prime}(\mathbf{a} ; \mathbf{y}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a})+h f(\mathbf{y})-f(\mathbf{a})}{h} \\
f^{\prime}(\mathbf{a} ; \mathbf{y}) & =\lim _{h \rightarrow 0} \frac{h f(\mathbf{y})}{h} \\
f^{\prime}(\mathbf{a} ; \mathbf{y}) & =f(\mathbf{y}) .
\end{aligned}
$$

Therefore, the derivative of linear transformation with respect to \mathbf{y} is equal to the value of the function at \mathbf{y}.

Example 3

A scalar field f is defined on \mathbb{R}^{n} by the equation $f(\mathbf{x})=\mathbf{a} \cdot \mathbf{x}$, where \mathbf{a} is a constant vector. Compute $f^{\prime}(\mathbf{x} ; \mathbf{y})$ for arbitary \mathbf{x} and \mathbf{y}.

Example 3

Solution

According to the definition, we have

$$
\begin{aligned}
f^{\prime}(\mathbf{a} ; \mathbf{y}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} \\
f^{\prime}(\mathbf{x} ; \mathbf{y}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \mathbf{y})-f(\mathbf{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{\mathbf{a} \cdot(\mathbf{x}+h \mathbf{y})-\mathbf{a} \cdot \mathbf{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(\mathbf{a} \cdot \mathbf{y})}{h} \\
& =\mathbf{a . y .}
\end{aligned}
$$

Example 4

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a given linear transformation. Compute the derivative $f^{\prime}(\mathbf{x} ; \mathbf{y})$ for the scalar field defined on \mathbb{R}^{n} by the equation $f(\mathbf{x})=\mathbf{x} \cdot T(\mathbf{x})$.

Example 4

Solution

According to the definition, we have

$$
\begin{aligned}
f^{\prime}(\mathbf{a} ; \mathbf{y}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} \\
f^{\prime}(\mathbf{x} ; \mathbf{y}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \mathbf{y})-f(\mathbf{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\mathbf{x}+h \mathbf{y}) \cdot T(\mathbf{x}+h \mathbf{y})-\mathbf{x} \cdot T(\mathbf{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\mathbf{x}+h \mathbf{y}) \cdot(T(\mathbf{x})+h T(\mathbf{y}))-\mathbf{x} \cdot T(\mathbf{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{\mathbf{x} \cdot T(\mathbf{x})+h \mathbf{x} \cdot T(\mathbf{y})+h \mathbf{y} \cdot T(\mathbf{x})+h^{2} \mathbf{y} \cdot T(\mathbf{y})-\mathbf{x} \cdot T(\mathbf{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{h \mathbf{x} \cdot T(\mathbf{y})+h \mathbf{y} \cdot T(\mathbf{x})+h^{2} \mathbf{y} \cdot T(\mathbf{y})}{h} \\
& =\mathbf{x} \cdot T(\mathbf{y})+\mathbf{y} \cdot T(\mathbf{x}) .
\end{aligned}
$$

Pre-requisite for theorem 3.1

To study how f behaves on the line passing through \mathbf{a} and $\mathbf{a}+\mathbf{y}$ for $\mathbf{y} \neq \mathbf{0}$ we introduce the function

$$
g(t)=f(\mathbf{a}+t \mathbf{y})
$$

The next theorem relates the derivatives $g^{\prime}(t)$ and $f^{\prime}(\mathbf{a}+t \mathbf{y} ; \mathbf{y})$.

Theorem 3.1

Let $g(t)=f(\mathbf{a}+t \mathbf{y})$. If one of the derivatives $g^{\prime}(t)$ or $f^{\prime}(\mathbf{a}+t \mathbf{y} ; \mathbf{y})$ exists then the other also exists and the two are equal,

$$
g^{\prime}(t)=f^{\prime}(\mathbf{a}+t \mathbf{y} ; \mathbf{y})
$$

In particular, when $t=0$ we have $g^{\prime}(0)=f^{\prime}(\mathbf{a} ; \mathbf{y})$.

Theorem 3.1

Proof

Forming the difference quotient for g, we have,

$$
\begin{aligned}
\frac{g(t+h)-g(t)}{h} & =\frac{f(\mathbf{a}+(t+h) \mathbf{y})-f(\mathbf{a}+t \mathbf{y})}{h} \\
\frac{g(t+h)-g(t)}{h} & =\frac{f(\mathbf{a}+t \mathbf{y}+h \mathbf{y})-f(\mathbf{a}+t \mathbf{y})}{h} \\
\lim _{h \rightarrow 0} \frac{g(t+h)-g(t)}{h} & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+t \mathbf{y}+h \mathbf{y})-f(\mathbf{a}+t \mathbf{y})}{h} \\
g^{\prime}(t) & =f^{\prime}(\mathbf{a}+t \mathbf{y} ; \mathbf{y}) .
\end{aligned}
$$

Example

Compute $f^{\prime}(\mathbf{a} ; \mathbf{y})$ if $f(\mathbf{x})=\|\mathbf{x}\|^{2}$ for all \mathbf{x} in \mathbb{R}^{n}.

Example

Solution

We let

$$
\begin{aligned}
g(t) & =f(\mathbf{a}+t \mathbf{y}) \\
& =\|\mathbf{a}+t \mathbf{y}\|^{2} \operatorname{since} f(\mathbf{x})=\|\mathbf{x}\|^{2} \\
& =(\mathbf{a}+t \mathbf{y}) \cdot(\mathbf{a}+t \mathbf{y}) \text { since }\|\mathbf{x}\|^{2}=\mathbf{x} \cdot \mathbf{x} \\
& =\mathbf{a} \cdot \mathbf{a}+t \mathbf{a} \cdot \mathbf{y}+t \mathbf{y} \cdot \mathbf{a}+t^{2} \mathbf{y} \cdot \mathbf{y} \\
g(t) & =\mathbf{a} \cdot \mathbf{a}+2 t \mathbf{a} \cdot \mathbf{y}+t^{2} \mathbf{y} \cdot \mathbf{y} \\
g^{\prime}(t) & =0+2 \mathbf{a} \cdot \mathbf{y}+2 t \mathbf{y} \cdot \mathbf{y}
\end{aligned}
$$

We need to find $f^{\prime}(\mathbf{a} ; \mathbf{y})$. If we subsitute

$$
\begin{aligned}
f^{\prime}(\mathbf{a}+0 \mathbf{y} ; \mathbf{y}) & =g^{\prime}(0)=2 \mathbf{a} \cdot \mathbf{y} \\
f^{\prime}(\mathbf{a} ; \mathbf{y}) & =2 \mathbf{a} \cdot \mathbf{y}
\end{aligned}
$$

Chapter 3

Directional Derivatives and Partial Derivatives

Directional Derivatives

- As mentioned above, given a function of two or more variables like $z=f(x, y)$, there are infinitely many different directions from any point in which the function can change.
- We know that we can represent directions as vectors, particularly unit vectors when its only the direction and not the magnitude that concerns us.

■ Directional derivatives are literally just derivatives or rates of change of a function in a particular direction given by a unit vector.

Definition

Directional Derivatives

If \mathbf{u} is a unit vector, then

$$
f^{\prime}(\mathbf{a} ; \mathbf{u})=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{u})-f(\mathbf{a})}{h}
$$

the derivative $f^{\prime}(\mathbf{a} ; \mathbf{u})$ is called the directional derivative of f at \mathbf{a} in the direction of \mathbf{u}.

Directional derivative of $f(x, y)$ at (a, b) in the direction of \mathbf{u}

If $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$ is a unit vector, we define the directional derivative $f_{\mathbf{u}}$ at the point (a, b) by

$$
\begin{aligned}
f_{\mathbf{u}}(a, b)= & \text { Rate of change of } f(x, y) \text { in the direction of } \mathbf{u} \\
& \text { at the point }(a, b) \\
= & \lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h}
\end{aligned}
$$

provided that the limit exists.

Example 1

Compute the directional derivative of $f(x, y)=x+y^{2}$ at the point $(4,0)$ in the direction $\mathbf{u}=\frac{1}{2} \mathbf{i}+\frac{\sqrt{3}}{2} \mathbf{j}$.

Example 1

Solution

The norm of \mathbf{u}, that is $\|\mathbf{u}\|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=1$. Thus \mathbf{u} is a unit vector.

$$
\begin{aligned}
f_{\mathbf{u}}(4,0) & =\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(4+h \frac{1}{2}, 0+h \frac{\sqrt{3}}{2}\right)-f(4,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(4+h \frac{1}{2}\right)+\left(h \frac{\sqrt{3}}{2}\right)^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{4+\frac{h}{2}+\frac{3 h^{2}}{4}-4}{h}=\lim _{h \rightarrow 0}\left(\frac{1}{2}+\frac{3}{4} h\right)=\frac{1}{2}
\end{aligned}
$$

Partial derivatives

- If \mathbf{u} is a unit vector, the derivative $f^{\prime}(\mathbf{a} ; \mathbf{u})$ is called the directional derivative of f at \mathbf{a} in the direction of \mathbf{u}.
- In particular, if $\mathbf{u}=\mathbf{e}_{k}$ (the $k^{\text {th }}$ unit coordinate vector) the directional derivative $f^{\prime}\left(\mathbf{a} ; \mathbf{e}_{k}\right)$ is called partial derivative with respect to \mathbf{e}_{k} and is also denoted by the symbool $D_{k} f(\mathbf{a})$.
- Thus

$$
\begin{aligned}
f^{\prime}(\mathbf{a} ; \mathbf{u}) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{u})-f(\mathbf{a})}{h}, \\
f^{\prime}\left(\mathbf{a} ; \mathbf{e}_{k}\right) & =\lim _{h \rightarrow 0} \frac{f\left(\mathbf{a}+h \mathbf{e}_{k}\right)-f(\mathbf{a})}{h}=D_{k} f(\mathbf{a}) .
\end{aligned}
$$

Partial derivatives

Notations

The following notations are also used for the partial derivative $D_{k} f(\mathbf{a}):$
(i) $D_{k} f\left(a_{1}, \ldots, a_{n}\right)$,
(ii) $\frac{\partial f}{\partial x_{k}}\left(a_{1}, \ldots, a_{n}\right)$,
(iii) $f_{x_{k}}^{\prime}\left(a_{1}, \ldots, a_{n}\right)$.

Sometimes the derivative $f_{x_{k}}^{\prime}$ is written without the prime as $f_{x_{k}}$ or even more simply as f_{k}.

Partial derivatives in \mathbb{R}^{2}

Notations

■ In \mathbb{R}^{2} the unit coordinate vectors are denoted by \mathbf{i} and \mathbf{j}.

- If $\mathbf{a}=(a, b)$ the partial derivatives $f^{\prime}(\mathbf{a} ; \mathbf{i})$ and $f^{\prime}(\mathbf{a} ; \mathbf{j})$ are also written as

$$
\frac{\partial f}{\partial x}(a, b) \text { and } \frac{\partial f}{\partial y}(a, b),
$$

respectively.

Partial derivatives in \mathbb{R}^{2}

Notations \Rightarrow Example

Consider the function $f(x, y)=9-x^{2}-y^{2}$. Let's investigate $f_{x}(1,2)$.

We fix $y=2$ and construct the single variable function $g(x)=f(x, 2)=9-x^{2}-2^{2}=5-x^{2}$. This parabola lies on the paraboloid $f(x, y)=9-x^{2}-y^{2}$ and in the vertical plane $y=2$.

Now, $g^{\prime}(x)=-2 x$ and so $f_{x}(1,2)=g^{\prime}(1)=-2(1)=-2$. This should be the slope of the tangent line to this curve $g(x)=5-x^{2}$ lying in the vertical plane $y=2$.

Partial derivatives in \mathbb{R}^{2}

Notations \Rightarrow Example \Rightarrow Cont...

Figure: Partial derivative of $f(x, y)=9-x^{2}-y^{2}$ at $(1,2)$.

Partial derivatives in \mathbb{R}^{3}

Notations

$■$ In \mathbb{R}^{3} the unit coordinate vectors are denoted by \mathbf{i}, \mathbf{j}, and \mathbf{k}.

- If $\mathbf{a}=(a, b, c)$ the partial derivatives $D_{1} f(\mathbf{a}), D_{2} f(\mathbf{a})$, and $D_{3} f(\mathbf{a})$ are denoted by

$$
\frac{\partial f}{\partial x}(a, b, c), \frac{\partial f}{\partial y}(a, b, c), \text { and } \frac{\partial f}{\partial z}(a, b, c)
$$

respectively.

Partial derivatives of second order

■ Partial differentiation produces new scalar fields $D_{1} f, \ldots, D_{n} f$ from a given scalar field f.

- The partial derivatives $D_{1} f, \ldots, D_{n} f$ are called first order partial derivatives of f.
- For function of two variables, there are four second order partial derivatives, which are written as follows:

$$
\begin{aligned}
D_{1}\left(D_{1} f\right) & =\frac{\partial^{2} f}{\partial x^{2}}, & D_{2}\left(D_{2} f\right)=\frac{\partial^{2} f}{\partial y^{2}} \\
D_{1}\left(D_{2} f\right) & =\frac{\partial^{2} f}{\partial x \partial y}, & D_{2}\left(D_{1} f\right)=\frac{\partial^{2} f}{\partial y \partial x} .
\end{aligned}
$$

Partial derivatives of second order Cont...

\square In the above, $D_{1}\left(D_{2} f\right)$ means the partial derivative of $\left(D_{2} f\right)$ with respect to the first variable.

- We sometimes use the notation $D_{i, j} f$ for the second-order partial derivative $D_{i}\left(D_{j} f\right)$.

■ For example, $D_{1,2} f=D_{1}\left(D_{2} f\right)$.

Partial derivatives of second order Cont...

- In the ∂-notation we indicate the order of derivatives by writing

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) .
$$

- This may or may not be equal to the other mixed partial derivative,

$$
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) .
$$

Partial derivatives of second order Remark

- We shall prove later that the two mixed partials $D_{1}\left(D_{2} f\right)$ and $D_{2}\left(D_{1} f\right)$ are equal at a point if one of them is continuous in a neighborhood of the point.

Example

Consider the function

$$
f(x, y)=x^{2}+5 x y-4 y^{2} .
$$

Find the second order partial derivatives of f.

Example

Solution

$$
\frac{\partial f}{\partial x}=2 x+5 y \quad \frac{\partial f}{\partial y}=5 x-8 y
$$

- A second order partial derivative should be a partial derivative of a first order partial derivative.
- So, first take two different first order partial derivatives, with respect to x or y and then, for each of those, you can take a partial derivative a second time with respect to x or y.

Example

Solution \Rightarrow Cont...

$$
\begin{aligned}
D_{1}\left(D_{1} f\right) & =\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}(2 x+5 y)=2, \\
D_{2}\left(D_{1} f\right) & =\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}(2 x+5 y)=5, \\
D_{1}\left(D_{2} f\right) & =\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}(5 x-8 y)=5, \\
D_{2}\left(D_{2} f\right) & =\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}(5 x-8 y)=-8 .
\end{aligned}
$$

Note that $f_{x y}$ and $f_{y x}$ are equal in this example. While this is not always the case.

Chapter 3

Directional Derivatives and Continuity

Differentiable function in one dimensional space

- If a is a point in the domain of a function f, then f is said to be differentiable at a if the derivative $f^{\prime}(a)$ exists:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- In calculus, a differentiable function is a function whose derivative exists at each point in its domain.
- The graph of a differentiable function must be relatively smooth, and cannot contain any breaks, bends, cusps, or any points with a vertical tangent.

Differentiability and continuity in one dimensional space

■ If f is differentiable at a point a, then f must also be continuous at a.

- In particular, any differentiable function must be continuous at every point in its domain.
- The converse does not hold: a continuous function need not be differentiable.
- For example, the absolute value function is continuous at $x=0$ but it is not differentiable at $x=0$.

Differentiability and continuity in one dimensional space

 Cont...■ In one-dimensional space, the existence of the derivative of a function f at a point implies continuity at that point.

- This can easily be shown by considering the definition of the derivative of a single variable function.

$$
\begin{aligned}
f(a+h)-f(a) & =\frac{f(a+h)-f(a)}{h} \cdot h \\
\lim _{h \rightarrow 0}(f(a+h)-f(a)) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} . h
\end{aligned}
$$

Differentiability and continuity in one dimensional space

 Cont...$$
\begin{aligned}
\lim _{h \rightarrow 0}(f(a+h)-f(a)) & =f^{\prime}(a) \cdot 0 \\
\lim _{h \rightarrow 0}(f(a+h)-f(a)) & =0 \\
\lim _{h \rightarrow 0} f(a+h)-\lim _{h \rightarrow 0} f(a) & =0 \\
\lim _{h \rightarrow 0} f(a+h) & =\lim _{h \rightarrow 0} f(a) \\
\lim _{h \rightarrow 0} f(a+h) & =f(a) .
\end{aligned}
$$

■ This shows that the existence of $f^{\prime}(a)$ implies continuity of f at a.

Example 1

Check the continuity and the differentiability of the following function at $x=0$:

$$
f(x)= \begin{cases}1 & \text { if } x<0 \\ x & \text { if } x \geq 0\end{cases}
$$

Example 1

Solution

First, we check the continuity of f at $x=0$.

$$
\begin{align*}
& \lim _{x \rightarrow 0^{-}} 1=1 \tag{2}\\
& \lim _{x \rightarrow 0^{+}} x=0 \tag{3}
\end{align*}
$$

Since $(2) \neq(3), f$ is not continuous at $x=0$.
It implies that f cannot be differentiable at $x=0$.

Example 2

Check the continuity and the differentiability of the function $f(x)=(x-1)^{\frac{1}{3}}$ at $x=1$.

Example 2

Solution

First, we check the continuity of f at $x=1$.

$$
\lim _{x \rightarrow 1^{-}}(x-1)^{\frac{1}{3}}=\lim _{x \rightarrow 1^{+}}(x-1)^{\frac{1}{3}}=f(1)=0
$$

So f is continuous at $x=1$. Let's check the differentiability at $x=1$.

$$
\begin{aligned}
& \qquad \begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{h^{\frac{1}{3}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h^{\frac{2}{3}} \rightarrow+\infty .}
\end{aligned} \\
& \text { It implies that } f \text { is not differentiable at } x=1 .
\end{aligned}
$$

Directional derivatives and continuity in \mathbb{R}^{n}

Assume the derivative $f^{\prime}(\mathbf{a} ; \mathbf{y})$ exists for some \mathbf{y}. Then if $h \neq 0$ we can write

$$
\begin{aligned}
f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a}) & =\frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} \cdot h \\
\lim _{h \rightarrow 0}(f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})) & =\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} \cdot h \\
\lim _{h \rightarrow 0}(f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})) & =f^{\prime}(\mathbf{a} ; \mathbf{y}) \cdot 0 \\
\lim _{h \rightarrow 0} f(\mathbf{a}+h \mathbf{y})-\lim _{h \rightarrow 0} f(\mathbf{a}) & =0 \\
\lim _{h \rightarrow 0} f(\mathbf{a}+h \mathbf{y}) & =\lim _{h \rightarrow 0} f(\mathbf{a}) \\
\lim _{h \rightarrow 0} f(\mathbf{a}+h \mathbf{y}) & =f(\mathbf{a}) .
\end{aligned}
$$

Directional derivatives and continuity in \mathbb{R}^{n}

 Cont...- This means that $f(\mathbf{x}) \rightarrow f(\mathbf{a})$ as $\mathbf{x} \rightarrow \mathbf{a}$ along a straight line through a having direction \mathbf{y}.
- If $f^{\prime}(\mathbf{a} ; \mathbf{y})$ exists for every vector \mathbf{y}, then $f(\mathbf{x}) \rightarrow f(\mathbf{a})$ as $\mathbf{x} \rightarrow \mathbf{a}$ along every line through \mathbf{a}.
- This seems to suggest that f is continuous at a.

■ Surprisingly enough, this conclusion need not be true.

Example

Let f be the scalar field defined on \mathbb{R}^{2} as follows:

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that the above scalar field has directional derivative in every direction at $\mathbf{0}$ but which is not continuous at $\mathbf{0}$.

Example

Solution

Let $\mathbf{a}=(0,0)$ and let $\mathbf{y}=(a, b)$ be any vector. If $a \neq 0$ and $h \neq 0$ we have

$$
\begin{aligned}
\frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} & =\frac{f(\mathbf{0}+h \mathbf{y})-f(\mathbf{0})}{h} \\
& =\frac{f(h \mathbf{y})-f(\mathbf{0})}{h} \\
& =\frac{f(h(a, b))-f(0,0)}{h} \\
& =\frac{f(h(a, b))}{h} \\
& =\frac{f(h a, h b)}{h} \\
& =\frac{1}{h}\left(\frac{(h a)(h b)^{2}}{(h a)^{2}+(h b)^{4}}\right)=\frac{a b^{2}}{a^{2}+h^{2} b^{4}} .
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} & =\lim _{h \rightarrow 0} \frac{a b^{2}}{a^{2}+h^{2} b^{4}} \\
\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} & =\frac{a b^{2}}{a^{2}+0 . b^{4}} . \\
f^{\prime}(\mathbf{0} ; \mathbf{y}) & =\frac{b^{2}}{a} .
\end{aligned}
$$

Example

Solution \Rightarrow Cont...

- If $\mathbf{y}=(0, b)$ we find, in a similar way, that $f^{\prime}(\mathbf{0} ; \mathbf{y})=0$.
- Therefore $f^{\prime}(\mathbf{0} ; \mathbf{y})$ exists for all directions \mathbf{y}.
- Also, $f(\mathbf{x}) \rightarrow 0$ as $\mathbf{x} \rightarrow \mathbf{0}$ along any straight line through the origin.
- However, at each point of the parabola $x=y^{2}$ (except at the origin) the function f has the value $1 / 2$.

Example

Solution \Rightarrow Cont...

- Since such points exist arbitrarily close to the origin and since $f(\mathbf{0})=0$, the function f is not continuous at $\mathbf{0}$.
- The above example describes a scalar field which has a directional derivative in every direction at $\mathbf{0}$ but which is not continuous at $\mathbf{0}$.

Remark

- The above example shows that the existence of all directional derivatives at a point fails to imply continuity at that point.
- For this reason, directional derivatives are somewhat unsatisfactory extension of the one-dimensional concept of derivative.
- A more suitable generalization exists which implies continuity and, at the same time, permits us to extend the principal theorems of one dimensional derivative theory to the higher dimensional case.
- This is called the total derivative.

Chapter 3

Total Derivative

What is total derivative?

- In the previous section, we discussed partial derivatives, which represent the instantaneous rates of change of a function, f, with respect to a single variable, while keeping all of the other independent variables constant.
- We can think of each partial derivative as the instantaneous rate of change of f, at a point a, as the point moves in a direction parallel to the corresponding coordinate axis.

What is total derivative?

Cont...

- Another way to say this is that the partial derivative, with respect to x_{i} is the instantaneous rate of change of f, at a point \mathbf{a}, as the point moves in the direction of the corresponding standard basis vector, \mathbf{e}_{j}.
- This naturally leads us to look at the instantaneous rates of change of f, at a point a, as the point moves in an arbitrary direction, with an arbitrary speed, i.e., as the point moves with an arbitrary velocity \mathbf{v}.
- Thus, we define the total derivative of f, at a, not as a number, but rather as a function which returns a number for each specified velocity vector.

Approximating a differentiable function by a linear function

 Motivating example- How your calculator gives answer for $\sin x$ for any particular value of x that you request?
- It can not remember sin value for every x, because this requires more memory.
- So it uses a polynomial approximation for that.

Approximating a differentiable function by a linear function Motivating example \Rightarrow Cont...

$$
\begin{aligned}
f^{\prime}(a) & \approx \frac{f(x)-f(a)}{(x-a)} \\
f(x) & \approx f(a)+f^{\prime}(a)(x-a) \\
\text { For example } x & =0.2 \Rightarrow \\
\sin (0.2) & \approx \sin 0+\cos 0(0.2-0) \\
& \approx 0.2
\end{aligned}
$$

- We can obtain a better result using higher order Taylor polynomials.

Approximating a differentiable function by a Taylor polynomial

We recall that in the one-dimensional case a function f with a derivative at a can be approximated near a by a linear Taylor polynomial. If $f^{\prime}(a)$ exists we let $E(a, h)$ denote the difference

$$
E(a, h)= \begin{cases}\frac{f(a+h)-f(a)}{h}-f^{\prime}(a) & \text { if } h \neq 0 \tag{4}\\ 0 & \text { if } h=0\end{cases}
$$

Approximating a differentiable function by a Taylor polynomial Cont...

- From (4) we obtain the formula;

$$
f(a+h)=f(a)+f^{\prime}(a) h+h E(a, h),
$$

an equation which holds also for $h=0$.

- This is the first-order Taylor formula for approximating $f(a+h)-f(a)$ by $f^{\prime}(a) h$.
- The error committed is $h E(a, h)$.
- From (4) we see that $E(a, h) \rightarrow 0$ as $h \rightarrow 0$.
- Therefore the error $h E(a, h)$ is of smaller order than h for small h.

The concept of differentiability in higher-dimensional space

■ This property of approximating a differentiable function by a linear function suggests a way of extending the concept of differentiability to the higher-dimensional case.

■ Let $f: \mathbf{S} \rightarrow \mathbb{R}$ be a scalar field defined on a set \mathbf{S} in \mathbb{R}^{n}.

- Let a be an interior point of \mathbf{S}, and let $\mathbf{B}(\mathbf{a} ; r)$ be an n-ball lying in \mathbf{S}.

■ Let \mathbf{v} be a vector with $\|\mathbf{v}\|<r$, so that $\mathbf{a}+\mathbf{v} \in \mathbf{B}(\mathbf{a} ; r)$.

Definition of a differentiable scalar field

We say that f is differentiable at a if there exists a linear transformation

$$
T_{\mathrm{a}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

from \mathbb{R}^{n} to \mathbb{R}, and a scalar function $E(\mathbf{a}, \mathbf{v})$ such that

$$
\begin{equation*}
f(\mathbf{a}+\mathbf{v})=f(\mathbf{a})+T_{\mathbf{a}}(\mathbf{v})+\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v}) \tag{5}
\end{equation*}
$$

for $\|\mathbf{v}\|<r$, where $E(\mathbf{a}, \mathbf{v}) \rightarrow 0$ as $\|\mathbf{v}\| \rightarrow 0$. The linear transformation $T_{\mathbf{a}}$ is called the total derivative of f at \mathbf{a}.

Definition of a differentiable scalar field Cont...

■ The total derivative was introduced by W.H. Young in 1908 and by M. Frechet in 1911 in more general context.

- The total derivative T_{a} is a linear transformation, not a number.
- The function value $T_{\mathrm{a}}(\mathbf{v})$ is a real number; it is defined for every point \mathbf{v} in \mathbb{R}^{n}.

Definition of a differentiable scalar field Cont...

- The equation (5), which holds for $\|\mathbf{v}\|<r$, is called a first-order Taylor formula for $f(\mathbf{a}+\mathbf{v})$.
- It gives a linear approximation, $T_{\mathrm{a}}(\mathbf{v})$, to the difference $f(\mathbf{a}+\mathbf{v})-f(\mathbf{a})$.
- The error in the approximation is $\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v})$, a term which is of smaller order than $\|\mathbf{v}\|$ as $\|\mathbf{v}\| \rightarrow 0$; that is, $E(\mathbf{a}, \mathbf{v})=O(\|\mathbf{v}\|)$ as $\|\mathbf{v}\| \rightarrow 0$.

Theorem (3.2)

Assume f is differentiable at a with total derivative T_{a}. Then the derivative $f^{\prime}(\mathbf{a} ; \mathbf{y})$ exists for every \mathbf{y} in \mathbb{R}^{n} and we have

$$
\begin{equation*}
T_{\mathrm{a}}(\mathbf{y})=f^{\prime}(\mathbf{a} ; \mathbf{y}) . \tag{6}
\end{equation*}
$$

Moreover, $f^{\prime}(\mathbf{a} ; \mathbf{y})$ is a linear combination of the components of \mathbf{y}. In fact, if $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$, we have

$$
\begin{equation*}
f^{\prime}(\mathbf{a} ; \mathbf{y})=\sum_{k=1}^{n} D_{k} f(\mathbf{a}) y_{k} . \tag{7}
\end{equation*}
$$

Theorem (3.2)

Proof

The equation (6) holds trivially if $\mathbf{y}=\mathbf{0}$ since both $T_{\mathrm{a}}(\mathbf{0})=0$ and $f^{\prime}(\mathbf{a} ; \mathbf{0})=0$.

Therefore we can assume that $\mathbf{y} \neq \mathbf{0}$.
Since f is differentiable at a we have a Taylor formula,

$$
\begin{equation*}
f(\mathbf{a}+\mathbf{v})=f(\mathbf{a})+T_{\mathbf{a}}(\mathbf{v})+\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v}) \tag{8}
\end{equation*}
$$

for $\|\mathbf{v}\|<r$ for some $r>0$, where $E(\mathbf{a}, \mathbf{v}) \rightarrow 0$ as $\|\mathbf{v}\| \rightarrow 0$.
In this formula we take $\mathbf{v}=h \mathbf{y}$, where $h \neq 0$ and $|h|\|\mathbf{y}\|<r$.
Then $\|\mathbf{v}\|<r$.
Since T_{a} is linear we have $T_{\mathrm{a}}(\mathbf{v})=T_{\mathrm{a}}(h \mathbf{y})=h T_{\mathrm{a}}(\mathbf{y})$.

Theorem (3.2)
Proof \Rightarrow Cont...

Therefore (8) gives us

$$
\begin{align*}
f(\mathbf{a}+\mathbf{v}) & =f(\mathbf{a})+T_{\mathbf{a}}(\mathbf{v})+\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v}) \\
f(\mathbf{a}+h \mathbf{y}) & =f(\mathbf{a})+h T_{\mathbf{a}}(\mathbf{y})+|h|\|\mathbf{y}\| E(\mathbf{a}, \mathbf{v}) \\
f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a}) & =h T_{\mathrm{a}}(\mathbf{y})+|h|\|\mathbf{y}\| E(\mathbf{a}, \mathbf{v}) \\
\frac{f(\mathbf{a}+h \mathbf{y})-f(\mathbf{a})}{h} & =T_{\mathrm{a}}(\mathbf{y})+\frac{\mid h\|\mathbf{y}\|}{h} E(\mathbf{a}, \mathbf{v}) . \tag{9}
\end{align*}
$$

Theorem (3.2)
Proof \Rightarrow Cont...

- Since $\|\mathbf{v}\| \rightarrow 0$ as $h \rightarrow 0$ and since $|h| / h= \pm 1$, the right hand member of (9) tends to the limit $T_{\mathrm{a}}(\mathbf{y})$ as $h \rightarrow 0$.
- Therefore the left-hand member tends to the same limit.
- This proves (6).

Theorem (3.2)
Proof \Rightarrow Cont...
Now we use the linearity of T_{a} to deduce (7). If $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ we have $\mathbf{y}=\sum_{k=1}^{n} y_{k} \mathbf{e}_{k}$, hence

$$
\begin{aligned}
T_{\mathbf{a}}(\mathbf{y}) & =T_{\mathbf{a}}\left(\sum_{k=1}^{n} y_{k} \mathbf{e}_{k}\right) \\
& =\sum_{k=1}^{n} y_{k} T_{\mathbf{a}}\left(\mathbf{e}_{k}\right) \\
& =\sum_{k=1}^{n} y_{k} f^{\prime}\left(\mathbf{a} ; \mathbf{e}_{k}\right) \\
& =\sum_{k=1}^{n} y_{k} D_{k} f(\mathbf{a})
\end{aligned}
$$

Chapter 3
Section 3.5

The Gradient of a Scalar Field

What is gradient of a scalar field?

- Assume that there is a heat source in a room and the temperature does not change over time.

■ Suppose the temperature in that room is given by a scalar field, f, so at each point (x, y, z) the temperature is $f(x, y, z)$.

- At each point in the room, the gradient of f at that point will show the direction the temperature rises most quickly.
- The magnitude of the gradient will determine how fast the temperature rises in that direction.

What is gradient of a scalar field?

The gradient of the function $f(x, y)=-\left(\cos ^{2} x+\cos ^{2} y\right)^{2}$

Figure: The gradient of the function $f(x, y)=-\left(\cos ^{2} x+\cos ^{2} y\right)^{2}$ depicted as a projected vector field on the bottom plane

Mathematical aspect of the gradient of a scalar field

- The gradient of a scalar field is a vector field that points in the direction of the greatest rate of increase of the scalar field.
- The magnitude is the rate of change and which points in the direction of the greatest rate of increase of the scalar field.
- If the vector is resolved, its components represent the rate of change of the scalar field with respect to each directional component.

Mathematical aspect of the gradient of a scalar field Notations

■ The gradient of a scalar field f is denoted ∇f.

- Where ∇ denotes the vector differential operator, del.
- The notation " $\operatorname{grad}(f)$ " is also commonly used for the gradient.

Mathematical aspect of the gradient of a scalar field Notations \Rightarrow Cont...

- Hence for a two-dimensional scalar field $f(x, y)$,

$$
\operatorname{grad} f(x, y)=\nabla f(x, y)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) .
$$

- And for a three-dimensional scalar field $f(x, y, z)$,

$$
\begin{aligned}
\operatorname{grad} f(x, y, z)=\nabla f(x, y, z) & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) f \\
& =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
\end{aligned}
$$

Mathematical aspect of the gradient of a scalar field Notations \Rightarrow Cont...

■ For a n-dimensional scalar field $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,

$$
\begin{aligned}
\operatorname{grad} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\nabla f & =\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right) f \\
& =\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
\end{aligned}
$$

Mathematical aspect of the gradient of a scalar field Notations \Rightarrow Cont...

In 2-space the gradient vector is often written as

$$
\nabla f(x, y)=\frac{\partial f(x, y)}{\partial x} \mathbf{i}+\frac{\partial f(x, y)}{\partial y} \mathbf{j}
$$

In 3-space the corresponding formula is

$$
\nabla f(x, y, z)=\frac{\partial f(x, y, z)}{\partial x} \mathbf{i}+\frac{\partial f(x, y, z)}{\partial y} \mathbf{j}+\frac{\partial f(x, y, z)}{\partial z} \mathbf{k} .
$$

Mathematical aspect of the gradient of a scalar field Notations \Rightarrow Cont...

In n-space the corresponding formula is

$$
\begin{aligned}
\nabla f\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & \frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{1}} \mathbf{e}_{1}+\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{2}} \mathbf{e}_{2} \\
& +\ldots+\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{n}} \mathbf{e}_{n} .
\end{aligned}
$$

Examples

For following scalar fields, calculate ∇f :
$1 f(x, y)=8 x+5 y$.
2 $f(x, y, z)=x^{4} y z$.
3 $f(x, y)=x^{2} \sin 5 y$.

Examples

Solution of 1

Given scalar field $f(x, y)=8 x+5 y$:

$$
\begin{aligned}
\nabla f(x, y) & =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \\
& =(8,5)
\end{aligned}
$$

Examples

Solution of 2

Given scalar field $f(x, y)=x^{4} y z$:

$$
\begin{aligned}
\nabla f(x, y, z) & =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
& =\left(4 x^{3} y z, x^{4} z, x^{4} y\right) .
\end{aligned}
$$

Examples

Solution of 3

Given scalar field $f(x, y)=x^{2} \sin 5 y$:

$$
\begin{aligned}
\nabla f(x, y) & =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \\
& =\left(2 x \sin (5 y), 5 x^{2} \cos (5 y)\right)
\end{aligned}
$$

The first order Taylor formula using gradient

The formula in Theorem (3.2), which expresses $f^{\prime}(\mathbf{a} ; \mathbf{y})$ as a linear combination of the components of \mathbf{y}, can now be written as a dot product,

$$
\begin{equation*}
f^{\prime}(\mathbf{a} ; \mathbf{y})=\sum_{k=1}^{n} D_{k} f(\mathbf{a}) y_{k}=\nabla f(\mathbf{a}) \cdot \mathbf{y} \tag{10}
\end{equation*}
$$

where $\nabla f(\mathbf{a})$ is the gradient of the scalar field f.

The first order Taylor formula using gradient Cont...

- If f is a differentiable function at point a we have a Taylor formula,

$$
f(\mathbf{a}+\mathbf{v})=f(\mathbf{a})+T_{\mathbf{a}}(\mathbf{v})+\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v}) .
$$

- From Theorem (3.2) we have

$$
\begin{aligned}
& T_{\mathrm{a}}(\mathbf{y})=f^{\prime}(\mathbf{a} ; \mathbf{y}) \\
& T_{\mathrm{a}}(\mathbf{v})=f^{\prime}(\mathbf{a} ; \mathbf{v})=\nabla f(\mathbf{a}) \cdot \mathbf{v}(\text { From }(10))
\end{aligned}
$$

- The first order Taylor formula can now be written in the form

$$
\begin{equation*}
f(\mathbf{a}+\mathbf{v})=f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot \mathbf{v}+\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v}) \tag{11}
\end{equation*}
$$

where $E(\mathbf{a}, \mathbf{v}) \rightarrow 0$ as $\|\mathbf{v}\| \rightarrow 0$.

The first order Taylor formula using gradient

 Cont...- The above form of Taylor formula resembles the one-dimensional Taylor formula, with the gradient vector $\nabla f\left(\right.$ a) playing the role of the derivative $f^{\prime}(\mathbf{a})$.
- From the Taylor formula we can easily prove that differentiability implies continuity.

Theorem (3.3)

If a scalar field f is differentiable at \mathbf{a}, then f is continuous at \mathbf{a}.

Theorem (3.3)

Proof

From equation (11) we have

$$
f(\mathbf{a}+\mathbf{v})-f(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \mathbf{v}+\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v})
$$

By taking modulus from both side we have

$$
|f(\mathbf{a}+\mathbf{v})-f(\mathbf{a})|=|\nabla f(\mathbf{a}) \cdot \mathbf{v}+\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v})| .
$$

Applying the triangle inequality we find

$$
0 \leq|f(\mathbf{a}+\mathbf{v})-f(\mathbf{a})| \leq|\nabla f(\mathbf{a}) \cdot \mathbf{v}|+|\|\mathbf{v}\| E(\mathbf{a}, \mathbf{v})| .
$$

Theorem (3.3)
Proof \Rightarrow Cont...

Applying the Cauchy-Schwarz inequality we find

$$
0 \leq|f(\mathbf{a}+\mathbf{v})-f(\mathbf{a})| \leq\|\nabla f(\mathbf{a})\|\|\mathbf{v}\|+\|\mathbf{v}\||E(\mathbf{a}, \mathbf{v})| .
$$

This shows that $f(\mathbf{a}+\mathbf{v}) \rightarrow f(\mathbf{a})$ as $\|\mathbf{v}\| \rightarrow 0$, so f is continuous at \mathbf{a}.

Example

Suppose that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by,

$$
g(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & , \text { if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0)\end{cases}
$$

(i) Using the definition, show that $\frac{\partial}{\partial x} g(0,0)=0$ and $\frac{\partial}{\partial y} g(0,0)=0$.
(ii) Check the continuity of g at $(0,0)$.
(iii) Check the differentiability of g at $(0,0)$.
(iv) What conclusions can be obtained from above results on the differentiability of scalar fields and their partial derivatives at some points?

Example

Solution

(i)

$$
\begin{aligned}
\frac{\partial}{\partial x} g(x, y) & =\lim _{h \rightarrow 0} \frac{g(x+h, y)-g(x, y)}{h} \\
\frac{\partial}{\partial x} g(0,0) & =\lim _{h \rightarrow 0} \frac{g(0+h, 0)-g(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{h \cdot 0}{h^{2}+0}-0\right) \\
& =0 .
\end{aligned}
$$

Example

Solution

$$
\begin{aligned}
\frac{\partial}{\partial y} g(x, y) & =\lim _{h \rightarrow 0} \frac{g(x, y+h)-g(x, y)}{h} \\
\frac{\partial}{\partial y} g(0,0) & =\lim _{h \rightarrow 0} \frac{g(0,0+h)-g(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{0 . h}{0+h^{2}}-0\right) \\
& =0
\end{aligned}
$$

Example

Solution

(ii) Consider the limit of the function $g(x, y)$ when $(x, y) \rightarrow(0,0)$ along the path $y=m x$, where $m \in \mathbb{R}$. Then we have

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} g(x, y)=\lim _{x \rightarrow 0} g(x, m x) & =\lim _{x \rightarrow 0} \frac{x \cdot m x}{x^{2}+(m x)^{2}} \\
& =\frac{m}{1+m^{2}}
\end{aligned}
$$

This limit changes when m changes. That is limit is not unique. Therefore $\lim _{(x, y) \rightarrow(0,0)} g(x, y)$ does not exists. It implies that g is not continuous at $(0,0)$.

Example

 Solution(iii) Since g is not continuous at $(0,0), g$ is not differentiable at $(0,0)$.
(iv) There exists some scalar fields which are not differentiable at a point but they have partial derivatives at that point.

Chapter 3

Sufficient Conditions for Differentiability

Motivating example

- Consider the function

$$
g(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

discussed in the previous Section.

- For this function, both partial derivatives $D_{1} g(\mathbf{0})$ and $D_{2} g(\mathbf{0})$ exist.

■ But g is not continuous at $\mathbf{0}$, hence g cannot be differentiable at $\mathbf{0}$.

Remark

- If f is differentiable at a, then all partial derivatives $D_{1} f(\mathbf{a}), \ldots, D_{n} f(\mathbf{a})$ exist.
- However, the existence of all these partial derivatives does not necessarily imply that f is differentiable at a.

Theorem (3.4)

A sufficient condition for differentiability

Assume that the partial derivatives $D_{1} f, \ldots, D_{n} f$ exist in some n-ball $B(\mathbf{a})$ and are continuous at \mathbf{a}. Then f is differentiable at \mathbf{a}.

Note: Sufficient Conditions If we say that " x is a sufficient condition for y," then we mean that if we have x, we know that y must follow. In other words, x guarantees y.

Theorem (3.4)

A sufficient condition for differentiability \Rightarrow Remark

- The above theorem shows that the existence of continuous partial derivatives at a point implies differentiability at that point.
- A scalar field satisfying the hypothesis of Theorem 3.4 is said to be continuously differentiable.

A differentiable function with discontinuous partial derivatives

- The Theorem 3.4 states that continuous partial derivatives are sufficient for a function to be differentiable.
- But the converse of the Theorem 3.4 is not true.
- That means, it is possible for a differentiable function to have discontinuous partial derivatives.

Example 1

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real valued function defined such that

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & ; \text { if } x \neq 0 \\ 0 & ; \text { if } x=0\end{cases}
$$

(a) Evaluate $f_{x}(x, y)$ and $f_{y}(x, y)$.
(b) Show that $f_{x}(x, y)$ and $f_{y}(x, y)$ are not continuous at $(x, y)=(0,0)$.
(c) What can you say about differentiability of f at the point $(0,0)$?

Example 1

Solution

(a)

$$
\begin{aligned}
f_{x}(x, y) & =\frac{\left(x^{2}+y^{4}\right) y^{2}-x y^{2}(2 x)}{\left(x^{2}+y^{4}\right)^{2}} \\
& =\frac{y^{6}-x^{2} y^{2}}{\left(x^{2}+y^{4}\right)^{2}} \\
f_{y}(x, y) & =\frac{\left(x^{2}+y^{4}\right) 2 x y-x y^{2} 4 y^{3}}{\left(x^{2}+y^{4}\right)^{2}} \\
& =\frac{2 x^{3} y-2 x y^{5}}{\left(x^{2}+y^{4}\right)^{2}} .
\end{aligned}
$$

Example 1

Solution

(b) Consider the limit of $f_{x}(x, y)$ when $(x, y) \rightarrow(0,0)$ along the path $y=m x$, where $m \in \mathbb{R}$. Then we have

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y) & =\lim _{x \rightarrow 0} f_{x}(x, m x) \\
& =\lim _{x \rightarrow 0} \frac{(m x)^{6}-x^{2}(m x)^{2}}{\left(x^{2}+(m x)^{4}\right)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{m x^{6}-m^{2} x^{4}}{x^{4}\left(1+m^{4} x^{2}\right)^{2}} \\
& =-m^{2}
\end{aligned}
$$

This limit depends on m. That is limit is not unique. Therefore the limit of $f_{x}(x, y)$ when $(x, y) \rightarrow(0,0)$ does not exist. So, $f_{x}(x, y)$ is not continuous at $(x, y)=(0,0)$.

Example 1

Solution

Consider the limit of $f_{y}(x, y)$ when $(x, y) \rightarrow(0,0)$ along the path $y=b x$, where $b \in \mathbb{R}$. Then we have

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} f_{y}(x, y) & =\lim _{x \rightarrow 0} f_{y}(x, b x) \\
& =\lim _{x \rightarrow 0} \frac{2 x^{3}(b x)-2 x(b x)^{5}}{\left(x^{2}+(b x)^{4}\right)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{2 b x^{4}-2 b^{5} x^{6}}{x^{4}\left(1+b^{4} x^{2}\right)^{2}} \\
& =2 b
\end{aligned}
$$

This limit also depends on b. That is limit is not unique.
Therefore the limit of $f_{y}(x, y)$ when $(x, y) \rightarrow(0,0)$ does not exist.
So, $f_{y}(x, y)$ is not continuous at $(x, y)=(0,0)$.

Example 1

Solution

(c) A function can be differentiable even with discontinuous partial derivatives. So, based on the fact that $f_{x}(x, y)$ and $f_{y}(x, y)$ are discontinuous, we cannot make any conclusion about the differentiable of $f(x, y)$ at $(0,0)$.

But we can show that $f(x, y)$ is not continuous at $(0,0)$ (Try as an Exercise). Since $f(x, y)$ is not continuous at $(0,0)$, it cannot be differentiable at (0,0).

Example 2

Consider the function

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Although the function is differentiable, its partial derivatives oscillate wildly near the origin, creating a discontinuity there.

It provides a counter example showing that partial derivatives do not need to be continuous for a function to be differentiable, demonstrating that the converse of the Theorem 3.4 is not true.

Chapter 3

Sufficient Conditions for the Equality of Mixed Partial Derivatives

Mixed partial derivatives

■ If f is a real-valued function of two variables, the two mixed partial derivatives $D_{1,2} f$ and $D_{2,1} f$ are not necessarily equal.

- By $D_{1,2} f$ we mean $D_{1}\left(D_{2} f\right)=\frac{\partial^{2} f}{\partial x \partial y}$, and by $D_{2,1} f$ we mean $D_{2}\left(D_{1} f\right)=\frac{\partial^{2} f}{\partial y \partial x}$.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a real valued function defined such that

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & ; \text { if }(x, y) \neq(0,0) \\ 0 & ; \text { if }(x, y)=(0,0)\end{cases}
$$

Determine $D_{2,1} f(0,0)$ and $D_{1,2} f(0,0)$.

Example

Solution

The defintion of $D_{2,1} f(0,0)$ states that

$$
\begin{equation*}
D_{2,1} f(0,0)=\lim _{k \rightarrow 0} \frac{D_{1} f(0, k)-D_{1} f(0,0)}{k} \tag{12}
\end{equation*}
$$

Now we have

$$
D_{1} f(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0
$$

and, if $(x, y) \neq(0,0)$, we find

$$
D_{1} f(x, y)=\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}
$$

Example

Therefore, if $k \neq 0$ we have $D_{1} f(0, k)=-k^{5} / k^{4}=-k$ and hence

$$
\frac{D_{1} f(0, k)-D_{1} f(0,0)}{k}=-1
$$

Using this in (12) we find that $D_{2,1} f(0,0)=-1$.
A similar argument shows that $D_{1,2} f(0,0)=1$, and hence $D_{2,1} f(0,0) \neq D_{1,2} f(0,0)$.

Remark

■ In the example just treated the two mixed partials $D_{1,2} f$ and $D_{2,1} f$ are not both continuous at the origin.

- It can be shown that the two mixed partials are equal at a point (a, b) if at least one of them is continuous in a neighborhood of the point.

Theorem (3.5)
Sufficient conditions for the equality of mixed partial derivatives

Assume f is a scalar field such that the partial derivatives $D_{1} f$, $D_{2} f, D_{1,2} f$ and $D_{2,1} f$ exist on an open set \mathbf{S}. If (a, b) is a point in S at which both $D_{1,2} f$ and $D_{2,1} f$ are continuous, we have

$$
\begin{equation*}
D_{1,2} f(a, b)=D_{2,1} f(a, b) \tag{13}
\end{equation*}
$$

Theorem (3.6)

Let f be a scalar field such that the partial derivatives $D_{1} f, D_{2} f$, and $D_{2,1} f$ exist on an open set \mathbf{S} containing (a, b). Assume further that $D_{2,1} f$ is continuous on \mathbf{S}. Then the derivative $D_{1,2} f(a, b)$ exists and we have

$$
\begin{equation*}
D_{1,2} f(a, b)=D_{2,1} f(a, b) . \tag{14}
\end{equation*}
$$

Chapter 3

The Relationship between Directional Derivative and Gradient Vector

Directional derivative and gradient vector

- When \mathbf{y} is a unit vector, the directional derivative $f^{\prime}(\mathbf{a} ; \mathbf{y})$ has a simple geometric relation to the gradient vector.
- Assume that $\nabla f(\mathbf{a}) \neq \mathbf{0}$ and let θ denote the angle between \mathbf{y} and $\nabla f(\mathbf{a})$.
- Then we have

$$
f^{\prime}(\mathbf{a} ; \mathbf{y})=\nabla f(\mathbf{a}) \cdot \mathbf{y}=\|\nabla f(\mathbf{a})\|\|\mathbf{y}\| \cos \theta=\|\nabla f(\mathbf{a})\| \cos \theta .
$$

Directional derivative and gradient vector

 Cont...- This shows that the directional derivative is simply the component of the gradient vector in the direction of \mathbf{y}.
- The derivative is largest when $\cos \theta=1$, that is, when \mathbf{y} has the same direction as $\nabla f(\mathbf{a})$.

Directional derivative and gradient vector

 Cont...■ In other words, at a given point a, the scalar field undergoes its maximum rate of change in the direction of the gradient vector.

- Moreover, this maximum is equal to the length of the gradient vector.
- When $\nabla f(\mathbf{a})$ is orthogonal to \mathbf{y}, the directional derivative $f^{\prime}(\mathbf{a} ; \mathbf{y})$ is 0 .

Example 1

What is the directional derivative of the function $f(x, y)=4 x^{2}+y^{2}$ at the point $x=2$ and $y=2$ in the direction of the vector $\mathbf{u}=2 \mathbf{i}+\mathbf{j}$.

Example 1

Solution

The gradient is $\nabla f(x, y)=8 x \mathbf{i}+2 y \mathbf{j}$, which is at the point $(2,2)$ is $\nabla f(2,2)=16 \mathbf{i}+4 \mathbf{j}$.

The direction is given by $\mathbf{u}=2 \mathbf{i}+\mathbf{j}$.
The unit vector $\hat{\mathbf{u}}$ in the direction of \mathbf{u} is $\frac{2 \mathbf{i}+\mathbf{j}}{\sqrt{5}}$. Hence,

$$
\begin{aligned}
f^{\prime}(\mathbf{a} ; \hat{\mathbf{u}}) & =\nabla f(\mathbf{a}) \cdot \hat{\mathbf{u}} \\
& =\nabla f(2,2) \cdot \hat{\mathbf{u}} \\
& =(16 \mathbf{i}+4 \mathbf{j}) \cdot \frac{2 \mathbf{i}+\mathbf{j}}{\sqrt{5}} \\
& =\frac{36}{\sqrt{5}}
\end{aligned}
$$

Example 2

Find the direction in which the function

$$
f(x, y)=\sin x+e^{y-1}
$$

has the greatest rate of change at the point $(0,1)$.

Example 2 Solution

At a given point, a scalar field undergoes its maximum rate of change in the direction of the gradient vector.

The gradient is $\nabla f(x, y)=\cos x \mathbf{i}+e^{y-1} \mathbf{j}$.
Thus, the gradient vector at $(0,1)$ is equal to
$\nabla f(0,1)=\cos 0 \mathbf{i}+e^{1-1} \mathbf{j}=\mathbf{i}+\mathbf{j}$.

Exercise

Find the directional derivative of

$$
f(x, y)=\frac{1}{1+x^{2}+y^{2}}
$$

at the point $(1,0)$ in the direction of the vector $\mathbf{v}=4 \mathbf{i}+3 \mathbf{j}$.
Answer is $-\frac{2}{5}$

Chapter 3

A Chain Rule for Derivatives of Scalar Fields

A function of a function

- Consider the expression $\sin t^{2}$.

■ It is clear that this is different from the straightforward sine function, $\sin t$.

■ We are finding the sine of t^{2}, not simply the sine of t.

- We call such an expression a "function of a function" or a "composite function".

A function of a function

 Cont...■ Suppose, in general, that we have two functions, $f(t)$ and $r(t)$.

- Then $g(t)=f[r(t)]$ is a function of a function.
- In our case, the function f is the sine function and the function r is the square function.

■ We could identify them more mathematically by saying that $f(t)=\sin t$ and $r(t)=t^{2}$, so that $f[r(t)]=f\left(t^{2}\right)=\sin t^{2}$.

The chain rule in one-dimensional space

In one-dimensional derivative theory, the chain rule enables us to compute the derivative of a function of a function $g(t)=f[r(t)]$ by the formula

$$
g^{\prime}(t)=f^{\prime}[r(t)] \cdot r^{\prime}(t)
$$

The chain rule in one-dimensional space

 Examples(i) $y=\sin x^{2}$
(ii) $y=(2 x-3)^{12}$
(iii) $y=e^{x^{3}}$
(iv) $y=e^{1+x^{2}}$
(v) $y=\sin \left(x+e^{x}\right)$

The chain rule for derivatives of scalar fields

This Section provides an extension of the formula when f is replaced by a scalar field defined on a set in n-space and r is replaced by a vector-valued function of a real variable with values in the domain of f.

The chain rule for derivatives of scalar fields Cont...

- It is easy to conceive of examples in which the composition of a scalar field and a vector field might arise.
- For instance, suppose $f(\mathbf{x})$ measures the temperature at a point \mathbf{x} of a solid in 3 -space, and suppose we wish to know how the temperature changes as the point \mathbf{x} varies along a curve C lying in the solid.
- If the curve is described by a vector-valued function \mathbf{r} defined on an interval $[a, b]$, we can introduce a new function g by means of the formula

$$
g(t)=f[\mathbf{r}(t)] \quad \text { if } a \leq t \leq b
$$

The chain rule for derivatives of scalar fields Cont...

- This composite function g expresses the temperature as a function of the parameter t, and its derivative $g^{\prime}(t)$ measures the rate of chage of the temperature along the curve.
- The following extension of the chain rule enables us to compute the derivative $g^{\prime}(t)$ without determining $g(t)$ explicitly.

Theorem 3.7

Let f be a scalar field defined on an open set \mathbf{S} in \mathbb{R}^{n}, and let \mathbf{r} be a vector-valued function which maps an interval \mathbb{J} from \mathbb{R}^{1} into \mathbf{S}. Define the composite function $g=f \circ \mathbf{r}$ on \mathbb{J} by the equation

$$
g(t)=f[\mathbf{r}(t)] \quad \text { if } t \in \mathbb{J} .
$$

Let t be a point in \mathbb{J} at which $\mathbf{r}^{\prime}(t)$ exists and assume that f is differentiable at $\mathbf{r}(t)$. Then $g^{\prime}(t)$ exists and is equal to the dot product

$$
\begin{equation*}
g^{\prime}(t)=\nabla f(\mathbf{a}) \cdot \mathbf{r}^{\prime}(t), \text { where } \mathbf{a}=\mathbf{r}(t) \tag{15}
\end{equation*}
$$

Theorem 3.7

Chain rule \Rightarrow Proof

Let $\mathbf{a}=\mathbf{r}(t)$, where t is a point in \mathbb{J} at which $\mathbf{r}^{\prime}(t)$ exists.
Since \mathbf{S} is open there is an n-ball $\mathbf{B}(\mathbf{a})$ lying in \mathbf{S}.
We take $h \neq 0$ but small enough so that $\mathbf{r}(t+h)$ lies in $\mathbf{B}(\mathbf{a})$, and we let $\mathbf{y}=\mathbf{r}(t+h)-\mathbf{r}(t)$.

Note that $\mathbf{y} \rightarrow \mathbf{0}$ as $h \rightarrow 0$.
Now we have

$$
\begin{align*}
g(t+h)-g(t) & =f[\mathbf{r}(t+h)]-f[\mathbf{r}(t)] \\
& =f(\mathbf{a}+\mathbf{y})-f(\mathbf{a}) . \tag{16}
\end{align*}
$$

Theorem 3.7
Chain rule \Rightarrow Proof
Applying the first-order Taylor formula for f we have

$$
\begin{equation*}
f(\mathbf{a}+\mathbf{y})-f(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \mathbf{y}+\|\mathbf{y}\| E(\mathbf{a}, \mathbf{y}) \tag{17}
\end{equation*}
$$

where $E(\mathbf{a}, \mathbf{y}) \rightarrow 0$ as $\|\mathbf{y}\| \rightarrow 0$.
From (16) and (17) we have

$$
g(t+h)-g(t)=\nabla f(\mathbf{a}) \cdot \mathbf{y}+\|\mathbf{y}\| E(\mathbf{a}, \mathbf{y})
$$

Since $\mathbf{y}=\mathbf{r}(t+h)-\mathbf{r}(t)$ this gives us

$$
\begin{aligned}
\frac{g(t+h)-g(t)}{h}= & \nabla f(\mathbf{a}) \cdot \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h} \\
& +\frac{\|\mathbf{r}(t+h)-\mathbf{r}(t)\|}{h} E(\mathbf{a}, \mathbf{y})
\end{aligned}
$$

Theorem 3.7
Chain rule \Rightarrow Proof

By letting $h \rightarrow 0$ we obtain:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{g(t+h)-g(t)}{h}= & \lim _{h \rightarrow 0} \nabla f(\mathbf{a}) \cdot \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h} \\
& +\lim _{h \rightarrow 0} \frac{\|\mathbf{r}(t+h)-\mathbf{r}(t)\|}{h} E(\mathbf{a}, \mathbf{y}) \\
\lim _{h \rightarrow 0} \frac{g(t+h)-g(t)}{h}= & \nabla f(\mathbf{a}) \cdot \lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}+0 \\
g^{\prime}(t)= & \nabla f(\mathbf{a}) \cdot \mathbf{r}^{\prime}(t)
\end{aligned}
$$

Example 1

Directional derivative along a curve

- When the function \mathbf{r} describes a curve C, the derivative \mathbf{r}^{\prime} is the velocity vector (tangent to the curve) and derivative g^{\prime} in Equation (15) is the derivative of f with respect to the velocity vector, assuming that $\mathbf{r}^{\prime} \neq \mathbf{0}$.
- If $\mathbf{T}(t)$ is a unit vector in the direction of $\mathbf{r}^{\prime}(t)$ (\mathbf{T} is the unit tangent vector), the dot product $\nabla f[\mathbf{r}(t)] . \mathbf{T}(t)$ is called the directional derivative of f along the curve C or in the direction of C.

Example 1

Directional derivative along a curve \Rightarrow Cont...

- For a plane curve we can write

$$
\mathbf{T}(t)=\cos \alpha(t) \mathbf{i}+\cos \beta(t) \mathbf{j}
$$

where $\alpha(t)$ and $\beta(t)$ are the angles made by the vector $\mathbf{T}(t)$ and the positive x - and y-axes; the directional derivative of f along C becomes

$$
\nabla f[\mathbf{r}(t)] \cdot \mathbf{T}(t)=D_{1} f[\mathbf{r}(t)] \cos \alpha(t)+D_{2} f[\mathbf{r}(t)] \cos \beta(t)
$$

Example 1

Directional derivative along a curve \Rightarrow Cont...

- This formula is often written more briefly as

$$
\nabla f . \mathbf{T}=\frac{\partial f}{\partial x} \cos \alpha+\frac{\partial f}{\partial y} \cos \beta
$$

- Since the directional derivative along C is defined in terms of \mathbf{T}, its value depends on the parametric representation chosen for C.
- A change of the representation could reverse the direction of T; this in turn, would reverse the sign of the directional derivative.

Example 2

Find the directional derivative of the scalar field $f(x, y)=x^{2}-3 x y$ along the parabola $y=x^{2}-x+2$ at the point $(1,2)$.

Example 2

Cont...

At an arbitary point (x, y) the gradient vector is

$$
\begin{aligned}
\nabla f(x, y) & =\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j} \\
& =(2 x-3 y) \mathbf{i}-3 x \mathbf{j}
\end{aligned}
$$

At the point $(1,2)$ we have $\nabla f(1,2)=-4 \mathbf{i}-3 \mathbf{j}$.
The parabola can be represented parametrically by the vector equation $\mathbf{r}(t)=t \mathbf{i}+\left(t^{2}-t+2\right) \mathbf{j}$.

Therefore $\mathbf{r}(1)=\mathbf{i}+2 \mathbf{j}, \mathbf{r}^{\prime}(t)=\mathbf{i}+(2 t-1) \mathbf{j}$, and $\mathbf{r}^{\prime}(1)=\mathbf{i}+\mathbf{j}$.
For this representation of C the unit tangent vector $\mathbf{T}(1)$ is $(\mathbf{i}+\mathbf{j}) / \sqrt{2}$ and the required directional derivative is $\nabla f(1,2) \cdot \mathbf{T}(1)=-7 / \sqrt{2}$.

Example 3

Let f be nonconstant scalar field, differentiable everywhere in the plane, and let c be a constant. Assume the Cartesian equation $f(x, y)=c$ describes a curve C having a tangent at each of its points. Prove that f has the following properties at each point of C :
(a) The gradient vector ∇f is normal to C.
(b) The directional derivative of f is zero along C.
(c) The directional derivative of f has its largest value in a direction normal to C.

Example 3

Cont...

If \mathbf{T} is a unit tangent vector to C, the directional derivative of f along C is the dot product $\nabla f . \mathbf{T}$.

This product is zero if ∇f is perpendicular to \mathbf{T}, and it has its largest value if ∇f is parallel to \mathbf{T}.

Therefore both statements (b) and (c) are consequences of (a).
To prove (a), consider any plane curve Γ with a vector equation of the form $\mathbf{r}(t)=X(t) \mathbf{i}+Y(t) \mathbf{j}$ and introduce the function $g(t)=f[\mathbf{r}(t)]$.

Example 3

By the chain rule we have $g^{\prime}(t)=\nabla f[\mathbf{r}(t)] \cdot \mathbf{r}^{\prime}(t)$.
When $\Gamma=C$, the function g has the constant value c so $g^{\prime}(t)=0$ if $\mathbf{r}(t) \in C$.

Since $g^{\prime}=\nabla f . \mathbf{r}^{\prime}$, this shows that ∇f is perpendicular to \mathbf{r}^{\prime} on C; hence ∇f is normal to C.

Level sets

Let f be a scalar field defined on a set \mathbf{S} in \mathbb{R}^{n} and consider those points \mathbf{x} in \mathbf{S} for which $f(\mathbf{x})$ has a constant value, say $f(\mathbf{x})=c$. Denote this set by $L(c)$, so that

$$
L(c)=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{S} \text { and } f(\mathbf{x})=c\} .
$$

The set $L(c)$ is called a level set of $f . \ln \mathbb{R}^{2}, L(c)$ is called a level curve; in \mathbb{R}^{3}, it is called a level surface.

Level sets

- A level curve of a function $f(x, y)$ is the curve of points (x, y) where $f(x, y)$ is some constant value.
- A level curve is simply a cross section of the graph of $z=f(x, y)$ taken at a constant value, say $z=c$.
- A function has many level curves, as one obtains a different level curve for each value of c in the range of $f(x, y)$.
- We can plot the level curves for a bunch of different constants c together in a level curve plot, which is sometimes called a contour plot.

Level sets

Level curve \Rightarrow Cont...

Figure: The graph of the function $f(x, y)=-x^{2}-2 y^{2}$ is shown along with a level curve plot.

Level sets

Level curve \Rightarrow Cont...

- Consider $z=f(x, y)=4 x^{2}+y^{2}$.
- The figure below shows the level curves, defined by $f(x, y)=c$, of the surface.
- The level curves are the ellipses $4 x^{2}+y^{2}=c$.
- As the plot shows, the gradient vector at (x, y) is normal to the level curve through (x, y).

Level sets

■ Now consider a scalar field f differentiable on an open set \mathbf{S} in \mathbb{R}^{3}, and examine one of its level surfaces, $L(c)$.

- Let a be a point on this surface, and consider a curve Γ which lies on the surface and passes through a.
- We shall prove that the gradient vector $\nabla f(\mathbf{a})$ is normal to this curve at a.

Level sets

Level surface \Rightarrow Cont...

- That is, we shall prove that $\nabla f(\mathbf{a})$ is perpendicular to the tangent vector of Γ at \mathbf{a}.
- For this purpose we assume that Γ is described parametrically by a differentiable vector-valued function \mathbf{r} defined on some interval \mathfrak{j} in \mathbb{R}^{1}.
- Since 「 lies on the level surface $L(c)$, the function \mathbf{r} satisfies the equation

$$
f[\mathbf{r}(t)]=c \text { for all } t \text { in } \dot{\mathfrak{j}} .
$$

Level sets

Level surface \Rightarrow Cont...

■ If $g(t)=f[\mathbf{r}(t)]$ for t in $\underset{\mathfrak{j}}{ }$, the chain rule states that

$$
g^{\prime}(t)=\nabla f[\mathbf{r}(t)] \cdot \mathbf{r}^{\prime}(t)
$$

■ Since g is a constant on \mathfrak{j}, we have $g^{\prime}(t)=0$ on \mathfrak{j}. In particular, choosing t_{1} so that $\mathbf{r}\left(t_{1}\right)=\mathbf{a}$, we find that

$$
\nabla f(\mathbf{a}) \cdot \mathbf{r}^{\prime}\left(t_{1}\right)=0
$$

■ In other words, the gradient of f at \mathbf{a} is perpendicular to the tangent vector $\mathbf{r}^{\prime}\left(t_{1}\right)$, as asserted.

Level sets

Level surface \Rightarrow Cont...

■ Now we take family of curves on the level surface $L(c)$, all passing through the point \mathbf{a}.

■ According to the foregoing discussion, the tangent vectors of all these curves are perpendicular to the gradient vector $\nabla f(\mathbf{a})$.

- If $\nabla f(\mathbf{a})$ is not the zero vector, these tangent vectors determine a plane, and the gradient $\nabla f(\mathbf{a})$ is normal to this plane.
- This particular plane is called as the tangent plane of the surface $L(c)$ at \mathbf{a}.

Level sets

Level surface \Rightarrow Cont...

- We know that a plane through a with normal vector N consists of all points $\mathbf{x} \in \mathbb{R}^{3}$ satisfying $N .(\mathbf{x}-\mathbf{a})=0$.
- Therefore the tangent plane to the level surface $L(c)$ at a consists of all \mathbf{x} in \mathbb{R}^{3} satisfying

$$
\nabla f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})=0
$$

Level sets

■ To obtain a Cartesian equation for this plane we express \mathbf{x}, a, and $\nabla f(\mathbf{a})$ in terms of thier components.

- Writing $\mathbf{x}=(x, y, z), \mathbf{a}=\left(x_{1}, y_{1}, z_{1}\right)$ and

$$
\nabla f(\mathbf{a})=D_{1} f(\mathbf{a}) \mathbf{i}+D_{2} f(\mathbf{a}) \mathbf{j}+D_{3} f(\mathbf{a}) \mathbf{k}
$$

we obtain the Cartesian equation

$$
D_{1} f(\mathbf{a})\left(x-x_{1}\right)+D_{2} f(\mathbf{a})\left(y-y_{1}\right)+D_{3} f(\mathbf{a})\left(z-z_{1}\right)=0 .
$$

Level sets

Level surface \Rightarrow Cont...

■ A similar discussion applies to a scalar fields defined in \mathbb{R}^{2}.

- In Example 3 we proved that the gradient vector $\nabla f(\mathbf{a})$ at a point a of a level curve is perpendicular to the tangent vector of the curve at \mathbf{a}.
- Therefore the tangent line of the level curve $L(c)$ at a point $\mathbf{a}=\left(x_{1}, y_{1}\right)$ has the Cartesian equation

$$
D_{1} f(\mathbf{a})\left(x-x_{1}\right)+D_{2} f(\mathbf{a})\left(y-y_{1}\right)=0 .
$$

The equation of the tangent plane

Consider the surface $z=f(x, y)$. If $Z=f(X, Y)$, then $(X, Y, Z)^{T}$ is a point on the surface $z=f(x, y)$. If the surface admits a non vertical tangent plane at $(X, Y, Z)^{T}$, then we say that f is differentiable at $(X, Y)^{T}$.

Figure: The tangent plane

The equation of the tangent plane Cont...

If f is differentiable at $(X, Y)^{T}$ its tangent plane must have equation

$$
z-Z=f_{x}(X, Y)(x-X)+f_{y}(X, Y)(y-Y)
$$

We usually write this in the less precise form

$$
z-Z=\frac{\partial f}{\partial x}(X, Y)(x-X)+\frac{\partial f}{\partial y}(X, Y)(y-Y)
$$

N.B Partial derivatives are to be evaluated at the point $(X, Y)^{T}$.

Example

Let $f(x, y)=\frac{x-y}{x+y}$.
(a) Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
(b) Find the equation of the tangent plane to the surface $z=f(x, y)$ where $x=1$ and $y=1$.

Example

Solution

(a)

$$
\begin{aligned}
f(x, y) & =\frac{x-y}{x+y} \\
\frac{\partial f}{\partial x} & =\frac{(x+y) \cdot 1-(x-y) \cdot 1}{(x+y)^{2}} \\
& =\frac{2 y}{(x+y)^{2}} . \\
\frac{\partial f}{\partial y} & =\frac{(x+y) \cdot(-1)-(x-y) \cdot 1}{(x+y)^{2}} \\
& =\frac{-2 x}{(x+y)^{2}} .
\end{aligned}
$$

Example

Solution

(b) The tangent plane must have equation

$$
z-Z=f_{x}(X, Y)(x-X)+f_{y}(X, Y)(y-Y)
$$

The equation of the tangent plane to the surface $z=f(x, y)$, where $X=1$ and $Y=1$ is

$$
z-Z=f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)
$$

where $Z=f(1,1)$. The required equation is

$$
z=\frac{1}{2}(x-1)-\frac{1}{2}(y-1) .
$$

Thank you!

