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Derivatives of Functions of
Several Variables I

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 2/166



Chapter 3
Section 3.1

The Derivative of a Scalar Field with
Respect to a Vector
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Definition
The derivative of a single variable function

The derivative of the function f (x) at the point x is given and
denoted by

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.
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Why do we need a vector to get derivative of a scalar field?

Suppose y = f (x). Then the derivative f ′(x) is the rate at
which y changes when we let x vary.

Since f is a function on the real line, so the variable can only
increase or decrease along that single line.

In one dimension, there is only one ”direction” in which x can
change.

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 5/166



Why do we need a vector to get derivative of a scalar field?
Cont...

Given a function of two or more variables like z = f (x , y),
there are infinitely many different directions from any point in
which the function can change.

We know that we can represent directions by using vectors.

Derivative of a scalar field is the rate of change of the scalar
field in a particular direction given by a vector.
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Why do we need a vector to get derivative of a scalar field?
Cont...

Let P is a point in the domain of f (x , y) and vectors v1, v2,
v3, and v4 represent possible directions in which we might
want to know the rate of change of f (x , y).

Suppose we may want to know the rate at which f (x , y) is
changing along or in the direction of the vector, v3, which
would be the direction along the x-axis.
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The derivative of a scalar field with respect to a vector
Motivative example

Suppose a person is at point a in a heated room with an open
window.

Let f (a) is the temperature at a point a.

If the person moves toward the window temperature will
decrease, but if the person moves toward heater it will
increase.

In general, the manner in which a field changes will depend on
the direction in which we move away from a.
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The derivative of a scalar field with respect to a vector
Motivative example ⇒ Cont...

Let f : S � R be a scalar field where S ⊆ Rn and let a be an
interior point of S.

We are going to study about how the field changes as we
move from a to a nearby point.
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The derivative of a scalar field with respect to a vector
Motivative example ⇒ Cont...

Suppose moving direction is given by the vector y.

That is suppose we move from a toward another point a+ y
along the line segment joining a and a+ y.

Each point on this segment has the form a+ hy, where h is a
real number.

The distance from a to a+ hy is ∥hy∥ = |h|∥y∥.
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The derivative of a scalar field with respect to a vector
Motivative example ⇒ Cont...

Since a is an interior point of S, there is an n-ball B(a; r)
lying entirely in S.

If h is chosen so that |h|∥y∥ < r , the segment from a to
a+ hy will lie in S.

We keep h ̸= 0 but small enough to guarantee that
a+ hy ∈ S.

So, then from the difference quotient we have,

f (a+ hy)− f (a)

h
.
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The derivative of a scalar field with respect to a vector
Motivative example ⇒ Cont...

If we consider the above quotient, the numerator tells us how
much the function changes when we move from a to a+ hy.

The quoteint itself is called the average rate of change of f
over the line segmengnt joining a to a+ hy.

We are interested in the behavior of this quotient as h � 0.

This leads us to the following definition.
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Definition
The derivative of a scalar field with respect to a vector

Given a scalar field f : S � R, where S ⊆ Rn. Let a be an interior
point of S and let y be an arbitrary point in Rn. The derivative of
f at a with respect to y is denoted by the symbol f ′(a; y) and is
defined by the equation

f ′(a; y) = lim
h→0

f (a+ hy)− f (a)

h
, (1)

when the limit on the right exists.
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Example 1

If y = 0, the difference quotient (1) is 0 for every h ̸= 0, so
f ′(a; 0) always exists and equals 0.

f ′(a; y) = lim
h→0

f (a+ hy)− f (a)

h

f ′(a; 0) = lim
h→0

f (a+ h0)− f (a)

h

f ′(a; 0) = lim
h→0

f (a)− f (a)

h
= 0.
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Example 2
Derivative of a linear transformation

If f : S → R is a linear transformation, then
f (a+ hy) = f (a) + hf (y). From the definition we have,

f ′(a; y) = lim
h→0

f (a+ hy)− f (a)

h

f ′(a; y) = lim
h→0

f (a) + hf (y)− f (a)

h

f ′(a; y) = lim
h→0

hf (y)

h

f ′(a; y) = f (y).

Therefore, the derivative of linear transformation with respect to y
is equal to the value of the function at y.
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Example 3

A scalar field f is defined on Rn by the equation f (x) = a.x, where
a is a constant vector. Compute f ′(x; y) for arbitary x and y.
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Example 3
Solution

According to the definition, we have

f ′(a; y) = lim
h→0

f (a+ hy)− f (a)

h

f ′(x; y) = lim
h→0

f (x+ hy)− f (x)

h

= lim
h→0

a.(x+ hy)− a.x

h

= lim
h→0

h(a.y)

h
= a.y.
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Example 4

Let T : Rn → Rn be a given linear transformation. Compute the
derivative f ′(x; y) for the scalar field defined on Rn by the equation
f (x) = x.T (x).
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Example 4
Solution

According to the definition, we have

f ′(a; y) = lim
h→0

f (a+ hy)− f (a)

h

f ′(x; y) = lim
h→0

f (x+ hy)− f (x)

h

= lim
h→0

(x+ hy).T (x+ hy)− x.T (x)

h

= lim
h→0

(x+ hy).(T (x) + hT (y))− x.T (x)

h

= lim
h→0

x.T (x) + hx.T (y) + hy.T (x) + h2y.T (y)− x.T (x)

h

= lim
h→0

hx.T (y) + hy.T (x) + h2y.T (y)

h
= x.T (y) + y.T (x).
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Pre-requisite for theorem 3.1

To study how f behaves on the line passing through a and a+ y
for y ̸= 0 we introduce the function

g(t) = f (a+ ty).

The next theorem relates the derivatives g ′(t) and f ′(a+ ty; y).
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Theorem 3.1

Let g(t) = f (a+ ty). If one of the derivatives g ′(t) or
f ′(a+ ty; y) exists then the other also exists and the two are equal,

g ′(t) = f ′(a+ ty; y).

In particular, when t = 0 we have g ′(0) = f ′(a; y).
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Theorem 3.1
Proof

Forming the difference quotient for g , we have,

g(t + h)− g(t)

h
=

f (a+ (t + h)y)− f (a+ ty)

h
g(t + h)− g(t)

h
=

f (a+ ty + hy)− f (a+ ty)

h

lim
h→0

g(t + h)− g(t)

h
= lim

h→0

f (a+ ty + hy)− f (a+ ty)

h

g ′(t) = f ′(a+ ty; y).
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Example

Compute f ′(a; y) if f (x) = ∥x∥2 for all x in Rn.

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 23/166



Example
Solution

We let

g(t) = f (a+ ty)

= ∥a+ ty∥2 since f (x) = ∥x∥2

= (a+ ty).(a+ ty) since ∥x∥2 = x.x

= a.a+ ta.y + ty.a+ t2y.y

g(t) = a.a+ 2ta.y + t2y.y

g ′(t) = 0 + 2a.y + 2ty.y

We need to find f ′(a; y). If we subsitute

f ′(a+ 0y; y) = g ′(0) = 2a.y

f ′(a; y) = 2a.y.
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Chapter 3
Section 3.2

Directional Derivatives and Partial
Derivatives
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Directional Derivatives

As mentioned above, given a function of two or more variables
like z = f (x , y), there are infinitely many different directions
from any point in which the function can change.

We know that we can represent directions as vectors,
particularly unit vectors when its only the direction and not
the magnitude that concerns us.

Directional derivatives are literally just derivatives or rates of
change of a function in a particular direction given by a unit
vector.
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Definition
Directional Derivatives

If u is a unit vector, then

f ′(a;u) = lim
h→0

f (a+ hu)− f (a)

h
,

the derivative f ′(a;u) is called the directional derivative of f at a
in the direction of u.
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Directional derivative of f (x , y) at (a, b) in the direction of u

If u = u1i+ u2j is a unit vector, we define the directional derivative
fu at the point (a, b) by

fu(a, b) = Rate of change of f (x , y) in the direction of u

at the point (a, b)

= lim
h→0

f (a+ hu1, b + hu2)− f (a, b)

h

provided that the limit exists.
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Example 1

Compute the directional derivative of f (x , y) = x + y2 at the point

(4, 0) in the direction u =
1

2
i+

√
3

2
j.
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Example 1
Solution

The norm of u, that is ∥u∥ =

√(
1
2

)2
+
(√

3
2

)2
= 1. Thus u is a

unit vector.

fu(4, 0) = lim
h→0

f (a+ hu1, b + hu2)− f (a, b)

h

= lim
h→0

f (4 + h 1
2 , 0 + h

√
3
2 )− f (4, 0)

h

= lim
h→0

(
4 + h 1

2

)
+
(
h
√
3
2

)2
− 4

h

= lim
h→0

4 + h
2 + 3h2

4 − 4

h
= lim

h→0

(
1

2
+

3

4
h

)
=

1

2
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Partial derivatives

If u is a unit vector, the derivative f ′(a;u) is called the
directional derivative of f at a in the direction of u.

In particular, if u = ek (the kth unit coordinate vector) the
directional derivative f ′(a; ek) is called partial derivative with
respect to ek and is also denoted by the symbool Dk f (a).

Thus

f ′(a;u) = lim
h→0

f (a+ hu)− f (a)

h
,

f ′(a; ek) = lim
h→0

f (a+ hek)− f (a)

h
= Dk f (a).
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Partial derivatives
Notations

The following notations are also used for the partial derivative
Dk f (a):

(i) Dk f (a1, ..., an),

(ii)
∂f

∂xk
(a1, ..., an),

(iii) f ′xk (a1, ..., an).

Sometimes the derivative f ′xk is written without the prime as fxk or
even more simply as fk .
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Partial derivatives in R
2

Notations

In R2 the unit coordinate vectors are denoted by i and j.

If a = (a, b) the partial derivatives f ′(a; i) and f ′(a; j) are also
written as

∂f

∂x
(a, b) and

∂f

∂y
(a, b),

respectively.
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Partial derivatives in R
2

Notations ⇒ Example

Consider the function f (x , y) = 9− x2 − y2. Let’s investigate
fx(1, 2).

We fix y = 2 and construct the single variable function
g(x) = f (x , 2) = 9− x2 − 22 = 5− x2. This parabola lies on the
paraboloid f (x , y) = 9− x2 − y2 and in the vertical plane y = 2.

Now, g ′(x) = −2x and so fx(1, 2) = g ′(1) = −2(1) = −2. This
should be the slope of the tangent line to this curve g(x) = 5− x2

lying in the vertical plane y = 2.
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Partial derivatives in R
2

Notations ⇒ Example ⇒ Cont...

Figure: Partial derivative of f (x , y) = 9− x2 − y2 at (1,2).
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Partial derivatives in R
3

Notations

In R3 the unit coordinate vectors are denoted by i, j, and k.

If a = (a, b, c) the partial derivatives D1f (a), D2f (a), and
D3f (a) are denoted by

∂f

∂x
(a, b, c),

∂f

∂y
(a, b, c), and

∂f

∂z
(a, b, c),

respectively.
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Partial derivatives of second order

Partial differentiation produces new scalar fields D1f , ....,Dnf
from a given scalar field f .

The partial derivatives D1f , ....,Dnf are called first order
partial derivatives of f .

For function of two variables, there are four second order
partial derivatives, which are written as follows:

D1(D1f ) =
∂2f

∂x2
, D2(D2f ) =

∂2f

∂y2

D1(D2f ) =
∂2f

∂x∂y
, D2(D1f ) =

∂2f

∂y∂x
.
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Partial derivatives of second order
Cont...

In the above, D1(D2f ) means the partial derivative of (D2f )
with respect to the first variable.

We sometimes use the notation Di ,j f for the second-order
partial derivative Di (Dj f ).

For example, D1,2f = D1(D2f ).
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Partial derivatives of second order
Cont...

In the ∂-notation we indicate the order of derivatives by
writing

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
.

This may or may not be equal to the other mixed partial
derivative,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
.
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Partial derivatives of second order
Remark

We shall prove later that the two mixed partials D1(D2f ) and
D2(D1f ) are equal at a point if one of them is continuous in a
neighborhood of the point.
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Example

Consider the function

f (x , y) = x2 + 5xy − 4y2.

Find the second order partial derivatives of f .
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Example
Solution

∂f

∂x
= 2x + 5y

∂f

∂y
= 5x − 8y .

A second order partial derivative should be a partial derivative
of a first order partial derivative.

So, first take two different first order partial derivatives, with
respect to x or y and then, for each of those, you can take a
partial derivative a second time with respect to x or y .
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Example
Solution⇒Cont...

D1(D1f ) =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
=

∂

∂x
(2x + 5y) = 2,

D2(D1f ) =
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
=

∂

∂y
(2x + 5y) = 5,

D1(D2f ) =
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
=

∂

∂x
(5x − 8y) = 5,

D2(D2f ) =
∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
=

∂

∂y
(5x − 8y) = −8.

Note that fxy and fyx are equal in this example. While this is not
always the case.
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Chapter 3
Section 3.3

Directional Derivatives and
Continuity
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Differentiable function in one dimensional space

If a is a point in the domain of a function f , then f is said to
be differentiable at a if the derivative f ′(a) exists:

f ′(a) = lim
h→0

f (a+ h)− f (a)

h
.

In calculus, a differentiable function is a function whose
derivative exists at each point in its domain.

The graph of a differentiable function must be relatively
smooth, and cannot contain any breaks, bends, cusps, or any
points with a vertical tangent.

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 45/166



Differentiability and continuity in one dimensional space

If f is differentiable at a point a, then f must also be
continuous at a.

In particular, any differentiable function must be continuous
at every point in its domain.

The converse does not hold: a continuous function need not
be differentiable.

For example, the absolute value function is continuous at
x = 0 but it is not differentiable at x = 0.
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Differentiability and continuity in one dimensional space
Cont...

In one-dimensional space, the existence of the derivative of a
function f at a point implies continuity at that point.

This can easily be shown by considering the definition of the
derivative of a single variable function.

f (a+ h)− f (a) =
f (a+ h)− f (a)

h
.h

lim
h→0

(f (a+ h)− f (a)) = lim
h→0

f (a+ h)− f (a)

h
.h
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Differentiability and continuity in one dimensional space
Cont...

lim
h→0

(f (a+ h)− f (a)) = f ′(a).0

lim
h→0

(f (a+ h)− f (a)) = 0

lim
h→0

f (a+ h)− lim
h→0

f (a) = 0

lim
h→0

f (a+ h) = lim
h→0

f (a)

lim
h→0

f (a+ h) = f (a).

This shows that the existence of f ′(a) implies continuity of f
at a.
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Example 1

Check the continuity and the differentiability of the following
function at x = 0:

f (x) =

{
1 if x < 0,
x if x ≥ 0.
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Example 1
Solution

First, we check the continuity of f at x = 0.

lim
x→0−

1 = 1, (2)

lim
x→0+

x = 0. (3)

Since (2) ̸= (3), f is not continuous at x = 0.

It implies that f cannot be differentiable at x = 0.
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Example 2

Check the continuity and the differentiability of the function

f (x) = (x − 1)
1
3 at x = 1.
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Example 2
Solution

First, we check the continuity of f at x = 1.

lim
x→1−

(x − 1)
1
3 = lim

x→1+
(x − 1)

1
3 = f (1) = 0.

So f is continuous at x = 1. Let’s check the differentiability at
x = 1.

lim
h→0

f (a+ h)− f (a)

h
= lim

h→0

f (1 + h)− f (1)

h
= lim

h→0

h
1
3

h

= lim
h→0

1

h
2
3

→ +∞.

It implies that f is not differentiable at x = 1.
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Directional derivatives and continuity in R
n

Assume the derivative f ′(a; y) exists for some y. Then if h ̸= 0 we
can write

f (a+ hy)− f (a) =
f (a+ hy)− f (a)

h
.h

lim
h→0

(f (a+ hy)− f (a)) = lim
h→0

f (a+ hy)− f (a)

h
.h

lim
h→0

(f (a+ hy)− f (a)) = f ′(a; y).0

lim
h→0

f (a+ hy)− lim
h→0

f (a) = 0

lim
h→0

f (a+ hy) = lim
h→0

f (a)

lim
h→0

f (a+ hy) = f (a).
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Directional derivatives and continuity in R
n

Cont...

This means that f (x) → f (a) as x → a along a straight line
through a having direction y.

If f ′(a; y) exists for every vector y, then f (x) → f (a) as
x → a along every line through a.

This seems to suggest that f is continuous at a.

Surprisingly enough, this conclusion need not be true.

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 54/166



Example

Let f be the scalar field defined on R2 as follows:

f (x , y) =


xy2

x2 + y4
if x ̸= 0,

0 if x = 0.

Show that the above scalar field has directional derivative in every
direction at 0 but which is not continuous at 0.
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Example
Solution

Let a = (0, 0) and let y = (a, b) be any vector. If a ̸= 0 and h ̸= 0
we have

f (a+ hy)− f (a)

h
=

f (0+ hy)− f (0)

h

=
f (hy)− f (0)

h

=
f (h(a, b))− f (0, 0)

h

=
f (h(a, b))

h

=
f (ha, hb)

h

=
1

h

(
(ha)(hb)2

(ha)2 + (hb)4

)
=

ab2

a2 + h2b4
.
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Example
Solution ⇒ Cont...

lim
h→0

f (a+ hy)− f (a)

h
= lim

h→0

ab2

a2 + h2b4

lim
h→0

f (a+ hy)− f (a)

h
=

ab2

a2 + 0.b4
.

f ′(0; y) =
b2

a
.
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Example
Solution ⇒ Cont...

If y = (0, b) we find, in a similar way, that f ′(0; y) = 0.

Therefore f ′(0; y) exists for all directions y.

Also, f (x) → 0 as x → 0 along any straight line through the
origin.

However, at each point of the parabola x = y2 (except at the
origin) the function f has the value 1/2.
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Example
Solution ⇒ Cont...

Since such points exist arbitrarily close to the origin and since
f (0) = 0, the function f is not continuous at 0.

The above example describes a scalar field which has a
directional derivative in every direction at 0 but which is not
continuous at 0.
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Remark

The above example shows that the existence of all directional
derivatives at a point fails to imply continuity at that point.

For this reason, directional derivatives are somewhat
unsatisfactory extension of the one-dimensional concept of
derivative.

A more suitable generalization exists which implies continuity
and, at the same time, permits us to extend the principal
theorems of one dimensional derivative theory to the higher
dimensional case.

This is called the total derivative.
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Chapter 3
Section 3.4

Total Derivative
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What is total derivative?

In the previous section, we discussed partial derivatives, which
represent the instantaneous rates of change of a function, f ,
with respect to a single variable, while keeping all of the other
independent variables constant.

We can think of each partial derivative as the instantaneous
rate of change of f , at a point a, as the point moves in a
direction parallel to the corresponding coordinate axis.
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What is total derivative?
Cont...

Another way to say this is that the partial derivative, with
respect to xi is the instantaneous rate of change of f , at a
point a, as the point moves in the direction of the
corresponding standard basis vector, ei .

This naturally leads us to look at the instantaneous rates of
change of f , at a point a, as the point moves in an arbitrary
direction, with an arbitrary speed, i.e., as the point moves
with an arbitrary velocity v.

Thus, we define the total derivative of f , at a, not as a
number, but rather as a function which returns a number for
each specified velocity vector.
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Approximating a differentiable function by a linear function
Motivating example

How your calculator gives answer for sin x for any particular
value of x that you request?

It can not remember sin value for every x , because this
requires more memory.

So it uses a polynomial approximation for that.
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Approximating a differentiable function by a linear function
Motivating example ⇒ Cont...

f ′(a) ≈ f (x)− f (a)

(x − a)

f (x) ≈ f (a) + f ′(a)(x − a)

For example x = 0.2 ⇒
sin(0.2) ≈ sin 0 + cos 0(0.2− 0)

≈ 0.2

We can obtain a better result using higher order Taylor
polynomials.
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Approximating a differentiable function by a Taylor polynomial

We recall that in the one-dimensional case a function f with a
derivative at a can be approximated near a by a linear Taylor
polynomial. If f ′(a) exists we let E (a, h) denote the difference

E (a, h) =

 f (a+ h)− f (a)

h
− f ′(a) if h ̸= 0,

0 if h = 0.
(4)
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Approximating a differentiable function by a Taylor polynomial
Cont...

From (4) we obtain the formula;

f (a+ h) = f (a) + f ′(a)h + hE (a, h),

an equation which holds also for h = 0.

This is the first-order Taylor formula for approximating
f (a+ h)− f (a) by f ′(a)h.

The error committed is hE (a, h).

From (4) we see that E (a, h) → 0 as h → 0.

Therefore the error hE (a, h) is of smaller order than h for
small h.
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The concept of differentiability in higher-dimensional space

This property of approximating a differentiable function by a
linear function suggests a way of extending the concept of
differentiability to the higher-dimensional case.

Let f : S → R be a scalar field defined on a set S in Rn.

Let a be an interior point of S, and let B(a; r) be an n-ball
lying in S.

Let v be a vector with ∥v∥ < r , so that a+ v ∈ B(a; r).
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Definition of a differentiable scalar field

We say that f is differentiable at a if there exists a linear
transformation

Ta : R
n → R

from Rn to R, and a scalar function E (a, v) such that

f (a+ v) = f (a) + Ta(v) + ∥v∥E (a, v), (5)

for ∥v∥ < r , where E (a, v) → 0 as ∥v∥ → 0. The linear
transformation Ta is called the total derivative of f at a.
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Definition of a differentiable scalar field
Cont...

The total derivative was introduced by W.H. Young in 1908
and by M. Frechet in 1911 in more general context.

The total derivative Ta is a linear transformation, not a
number.

The function value Ta(v) is a real number; it is defined for
every point v in Rn.
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Definition of a differentiable scalar field
Cont...

The equation (5), which holds for ∥v∥ < r , is called a
first-order Taylor formula for f (a+ v).

It gives a linear approximation, Ta(v), to the difference
f (a+ v)− f (a).

The error in the approximation is ∥v∥E (a, v), a term which is
of smaller order than ∥v∥ as ∥v∥ → 0; that is,
E (a, v) = O(∥v∥) as ∥v∥ → 0.
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Theorem (3.2)

Assume f is differentiable at a with total derivative Ta. Then the
derivative f ′(a; y) exists for every y in Rn and we have

Ta(y) = f ′(a; y). (6)

Moreover, f ′(a; y) is a linear combination of the components of y.
In fact, if y = (y1, ..., yn), we have

f ′(a; y) =
n∑

k=1

Dk f (a)yk . (7)
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Theorem (3.2)
Proof

The equation (6) holds trivially if y = 0 since both Ta(0) = 0 and
f ′(a; 0) = 0.

Therefore we can assume that y ̸= 0.

Since f is differentiable at a we have a Taylor formula,

f (a+ v) = f (a) + Ta(v) + ∥v∥E (a, v), (8)

for ∥v∥ < r for some r > 0, where E (a, v) → 0 as ∥v∥ → 0.

In this formula we take v = hy, where h ̸= 0 and |h|∥y∥ < r .

Then ∥v∥ < r .

Since Ta is linear we have Ta(v) = Ta(hy) = hTa(y).
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Theorem (3.2)
Proof ⇒ Cont...

Therefore (8) gives us

f (a+ v) = f (a) + Ta(v) + ∥v∥E (a, v)
f (a+ hy) = f (a) + hTa(y) + |h|∥y∥E (a, v)

f (a+ hy)− f (a) = hTa(y) + |h|∥y∥E (a, v)
f (a+ hy)− f (a)

h
= Ta(y) +

|h|∥y∥
h

E (a, v). (9)
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Theorem (3.2)
Proof ⇒ Cont...

Since ∥v∥ → 0 as h → 0 and since |h|/h = ±1, the right hand
member of (9) tends to the limit Ta(y) as h → 0.

Therefore the left-hand member tends to the same limit.

This proves (6).
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Theorem (3.2)
Proof ⇒ Cont...

Now we use the linearity of Ta to deduce (7). If y = (y1, ..., yn) we
have y =

∑n
k=1 ykek , hence

Ta(y) = Ta

(
n∑

k=1

ykek

)

=
n∑

k=1

ykTa(ek)

=
n∑

k=1

yk f
′(a; ek)

=
n∑

k=1

ykDk f (a).
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Chapter 3
Section 3.5

The Gradient of a Scalar Field
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What is gradient of a scalar field?

Assume that there is a heat source in a room and the
temperature does not change over time.

Suppose the temperature in that room is given by a scalar
field, f , so at each point (x , y , z) the temperature is f (x , y , z).

At each point in the room, the gradient of f at that point will
show the direction the temperature rises most quickly.

The magnitude of the gradient will determine how fast the
temperature rises in that direction.
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What is gradient of a scalar field?
The gradient of the function f (x , y) = −(cos2 x + cos2 y)2

Figure: The gradient of the function f (x , y) = −(cos2 x + cos2 y)2

depicted as a projected vector field on the bottom plane
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Mathematical aspect of the gradient of a scalar field

The gradient of a scalar field is a vector field that points in
the direction of the greatest rate of increase of the scalar field.

The magnitude is the rate of change and which points in the
direction of the greatest rate of increase of the scalar field.

If the vector is resolved, its components represent the rate of
change of the scalar field with respect to each directional
component.

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 80/166



Mathematical aspect of the gradient of a scalar field
Notations

The gradient of a scalar field f is denoted ▽f .

Where ▽ denotes the vector differential operator, del.

The notation ”grad(f )” is also commonly used for the
gradient.
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Mathematical aspect of the gradient of a scalar field
Notations⇒Cont...

Hence for a two-dimensional scalar field f (x , y),

grad f (x , y) = ▽f (x , y) =
(

∂

∂x
,
∂

∂y

)
f =

(
∂f

∂x
,
∂f

∂y

)
.

And for a three-dimensional scalar field f (x , y , z),

grad f (x , y , z) = ▽f (x , y , z) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
f

=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.
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Mathematical aspect of the gradient of a scalar field
Notations⇒Cont...

For a n-dimensional scalar field f (x1, x2, ..., xn),

grad f (x1, x2, ..., xn) = ▽f =

(
∂

∂x1
,

∂

∂x2
, ...,

∂

∂xn

)
f

=

(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

)
.
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Mathematical aspect of the gradient of a scalar field
Notations⇒Cont...

In 2-space the gradient vector is often written as

▽f (x , y) = ∂f (x , y)

∂x
i+

∂f (x , y)

∂y
j.

In 3-space the corresponding formula is

▽f (x , y , z) = ∂f (x , y , z)

∂x
i+

∂f (x , y , z)

∂y
j+

∂f (x , y , z)

∂z
k.
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Mathematical aspect of the gradient of a scalar field
Notations⇒Cont...

In n-space the corresponding formula is

▽f (x1, x2, ..., xn) =
∂f (x1, x2, ..., xn)

∂x1
e1 +

∂f (x1, x2, ..., xn)

∂x2
e2

+...+
∂f (x1, x2, ..., xn)

∂xn
en.
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Examples

For following scalar fields, calculate ▽f :

1 f (x , y) = 8x + 5y .

2 f (x , y , z) = x4yz .

3 f (x , y) = x2 sin 5y .
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Examples
Solution of 1

Given scalar field f (x , y) = 8x + 5y :

▽f (x , y) =

(
∂f

∂x
,
∂f

∂y

)
= (8, 5).
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Examples
Solution of 2

Given scalar field f (x , y) = x4yz :

▽f (x , y , z) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

(
4x3yz , x4z , x4y

)
.
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Examples
Solution of 3

Given scalar field f (x , y) = x2 sin 5y :

▽f (x , y) =

(
∂f

∂x
,
∂f

∂y

)
= (2x sin(5y), 5x2 cos(5y)).
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The first order Taylor formula using gradient

The formula in Theorem (3.2), which expresses f ′(a; y) as a linear
combination of the components of y, can now be written as a dot
product,

f ′(a; y) =
n∑

k=1

Dk f (a)yk = ▽f (a).y, (10)

where ▽f (a) is the gradient of the scalar field f .
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The first order Taylor formula using gradient
Cont...

If f is a differentiable function at point a we have a Taylor
formula,

f (a+ v) = f (a) + Ta(v) + ∥v∥E (a, v).

From Theorem (3.2) we have

Ta(y) = f ′(a; y)

Ta(v) = f ′(a; v) = ▽f (a).v (From (10)).

The first order Taylor formula can now be written in the form

f (a+ v) = f (a) + ▽f (a).v + ∥v∥E (a, v), (11)

where E (a, v) → 0 as ∥v∥ → 0.
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The first order Taylor formula using gradient
Cont...

The above form of Taylor formula resembles the
one-dimensional Taylor formula, with the gradient vector
▽f (a) playing the role of the derivative f ′(a).

From the Taylor formula we can easily prove that
differentiability implies continuity.
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Theorem (3.3)

If a scalar field f is differentiable at a, then f is continuous at a.
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Theorem (3.3)
Proof

From equation (11) we have

f (a+ v)− f (a) = ▽f (a).v + ∥v∥E (a, v)

By taking modulus from both side we have

|f (a+ v)− f (a)| = |▽f (a).v + ∥v∥E (a, v)|.

Applying the triangle inequality we find

0 ≤ |f (a+ v)− f (a)| ≤ |▽f (a).v|+ |∥v∥E (a, v)|.
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Theorem (3.3)
Proof ⇒ Cont...

Applying the Cauchy-Schwarz inequality we find

0 ≤ |f (a+ v)− f (a)| ≤ ∥▽f (a)∥∥v∥+ ∥v∥|E (a, v)|.

This shows that f (a+ v) → f (a) as ∥v∥ → 0, so f is continuous
at a.
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Example

Suppose that g : R2 →R is defined by,

g(x , y) =


xy

x2 + y2
, if (x , y) ̸= (0, 0),

0 , if (x , y) = (0, 0).

(i) Using the definition, show that
∂

∂x
g(0, 0) = 0 and

∂

∂y
g(0, 0) = 0.

(ii) Check the continuity of g at (0, 0).

(iii) Check the differentiability of g at (0, 0).

(iv) What conclusions can be obtained from above results on the
differentiability of scalar fields and their partial derivatives at
some points?
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Example
Solution

(i)

∂

∂x
g(x , y) = lim

h→0

g(x + h, y)− g(x , y)

h
∂

∂x
g(0, 0) = lim

h→0

g(0 + h, 0)− g(0, 0)

h

= lim
h→0

1

h

(
h.0

h2 + 0
− 0

)
= 0.
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Example
Solution

∂

∂y
g(x , y) = lim

h→0

g(x , y + h)− g(x , y)

h

∂

∂y
g(0, 0) = lim

h→0

g(0, 0 + h)− g(0, 0)

h

= lim
h→0

1

h

(
0.h

0 + h2
− 0

)
= 0.
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Example
Solution

(ii) Consider the limit of the function g(x , y) when (x , y) → (0, 0)
along the path y = mx , where m ∈ R. Then we have

lim
(x ,y)→(0,0)

g(x , y) = lim
x→0

g(x ,mx) = lim
x→0

x .mx

x2 + (mx)2

=
m

1 +m2
.

This limit changes when m changes. That is limit is not
unique. Therefore lim(x ,y)→(0,0) g(x , y) does not exists. It
implies that g is not continuous at (0, 0).
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Example
Solution

(iii) Since g is not continuous at (0, 0), g is not differentiable at
(0, 0).

(iv) There exists some scalar fields which are not differentiable at
a point but they have partial derivatives at that point.
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Chapter 3
Section 3.6

Sufficient Conditions for
Differentiability
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Motivating example

Consider the function

g(x , y) =

{ xy

x2 + y2
if (x , y) ̸= (0, 0)

0 if (x , y) = (0, 0),

discussed in the previous Section.

For this function, both partial derivatives D1g(0) and D2g(0)
exist.

But g is not continuous at 0, hence g cannot be differentiable
at 0.
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Remark

If f is differentiable at a, then all partial derivatives
D1f (a), ...,Dnf (a) exist.

However, the existence of all these partial derivatives does not
necessarily imply that f is differentiable at a.
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Theorem (3.4)
A sufficient condition for differentiability

Assume that the partial derivatives D1f , ...,Dnf exist in some
n-ball B(a) and are continuous at a. Then f is differentiable at a.

Note: Sufficient Conditions If we say that ”x is a sufficient condition

for y ,” then we mean that if we have x , we know that y must follow. In

other words, x guarantees y .
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Theorem (3.4)
A sufficient condition for differentiability ⇒ Remark

The above theorem shows that the existence of continuous
partial derivatives at a point implies differentiability at that
point.

A scalar field satisfying the hypothesis of Theorem 3.4 is said
to be continuously differentiable.
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A differentiable function with discontinuous partial derivatives

The Theorem 3.4 states that continuous partial derivatives
are sufficient for a function to be differentiable.

But the converse of the Theorem 3.4 is not true.

That means, it is possible for a differentiable function to have
discontinuous partial derivatives.
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Example 1

Let f : Rn → R be a real valued function defined such that

f (x , y) =


xy2

x2 + y4
; if x ̸= 0,

0 ; if x = 0.

(a) Evaluate fx(x , y) and fy (x , y).

(b) Show that fx(x , y) and fy (x , y) are not continuous at
(x , y) = (0, 0).

(c) What can you say about differentiability of f at the point
(0, 0)?
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Example 1
Solution

(a)

fx(x , y) =
(x2 + y4)y2 − xy2(2x)

(x2 + y4)2

=
y6 − x2y2

(x2 + y4)2

fy (x , y) =
(x2 + y4)2xy − xy24y3

(x2 + y4)2

=
2x3y − 2xy5

(x2 + y4)2
.
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Example 1
Solution

(b) Consider the limit of fx(x , y) when (x , y) → (0, 0) along the
path y = mx , where m ∈ R. Then we have

lim
(x ,y)→(0,0)

fx(x , y) = lim
x→0

fx(x ,mx)

= lim
x→0

(mx)6 − x2(mx)2

(x2 + (mx)4)2

= lim
x→0

mx6 −m2x4

x4(1 +m4x2)2

= −m2.

This limit depends on m. That is limit is not unique.
Therefore the limit of fx(x , y) when (x , y) → (0, 0) does not
exist. So, fx(x , y) is not continuous at (x , y) = (0, 0).
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Example 1
Solution

Consider the limit of fy (x , y) when (x , y) → (0, 0) along the path
y = bx , where b ∈ R. Then we have

lim
(x ,y)→(0,0)

fy (x , y) = lim
x→0

fy (x , bx)

= lim
x→0

2x3(bx)− 2x(bx)5

(x2 + (bx)4)2

= lim
x→0

2bx4 − 2b5x6

x4(1 + b4x2)2

= 2b.

This limit also depends on b. That is limit is not unique.
Therefore the limit of fy (x , y) when (x , y) → (0, 0) does not exist.
So, fy (x , y) is not continuous at (x , y) = (0, 0).

Department of Mathematics University of Ruhuna — Real Analysis III(MAT312β) 110/166



Example 1
Solution

(c) A function can be differentiable even with discontinuous
partial derivatives. So, based on the fact that fx(x , y) and
fy (x , y) are discontinuous, we cannot make any conclusion
about the differentiable of f (x , y) at (0, 0) .

But we can show that f (x , y) is not continuous at (0,0) (Try
as an Exercise). Since f (x , y) is not continuous at (0, 0), it
cannot be differentiable at (0, 0).
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Example 2

Consider the function

f (x , y) =

(x2 + y2) sin

(
1√

x2+y2

)
if (x , y) ̸= (0, 0)

0 if (x , y) = (0, 0).

Although the function is differentiable, its partial derivatives
oscillate wildly near the origin, creating a discontinuity there.

It provides a counter example showing that partial derivatives do
not need to be continuous for a function to be differentiable,
demonstrating that the converse of the Theorem 3.4 is not true.
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Chapter 3
Section 3.7

Sufficient Conditions for the Equality
of Mixed Partial Derivatives
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Mixed partial derivatives

If f is a real-valued function of two variables, the two mixed
partial derivatives D1,2f and D2,1f are not necessarily equal.

By D1,2f we mean D1(D2f ) =
∂2f

∂x∂y
, and by D2,1f we mean

D2(D1f ) =
∂2f

∂y∂x
.
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Example

Let f : R2 → R be a real valued function defined such that

f (x , y) =

xy
x2 − y2

x2 + y2
; if (x , y) ̸= (0, 0),

0 ; if (x , y) = (0, 0).

Determine D2,1f (0, 0) and D1,2f (0, 0).
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Example
Solution

The defintion of D2,1f (0, 0) states that

D2,1f (0, 0) = lim
k→0

D1f (0, k)− D1f (0, 0)

k
. (12)

Now we have

D1f (0, 0) = lim
h→0

f (h, 0)− f (0, 0)

h
= 0

and, if (x , y) ̸= (0, 0), we find

D1f (x , y) =
y(x4 + 4x2y2 − y4)

(x2 + y2)2
.
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Example
Solution⇒Cont...

Therefore, if k ̸= 0 we have D1f (0, k) = −k5/k4 = −k and hence

D1f (0, k)− D1f (0, 0)

k
= −1.

Using this in (12) we find that D2,1f (0, 0) = −1.

A similar argument shows that D1,2f (0, 0) = 1, and hence
D2,1f (0, 0) ̸= D1,2f (0, 0).
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Remark

In the example just treated the two mixed partials D1,2f and
D2,1f are not both continuous at the origin.

It can be shown that the two mixed partials are equal at a
point (a, b) if at least one of them is continuous in a
neighborhood of the point.
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Theorem (3.5)
Sufficient conditions for the equality of mixed partial derivatives

Assume f is a scalar field such that the partial derivatives D1f ,
D2f , D1,2f and D2,1f exist on an open set S. If (a, b) is a point in
S at which both D1,2f and D2,1f are continuous, we have

D1,2f (a, b) = D2,1f (a, b). (13)
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Theorem (3.6)

Let f be a scalar field such that the partial derivatives D1f , D2f ,
and D2,1f exist on an open set S containing (a, b). Assume further
that D2,1f is continuous on S. Then the derivative D1,2f (a, b)
exists and we have

D1,2f (a, b) = D2,1f (a, b). (14)
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Chapter 3
Section 3.8

The Relationship between Directional
Derivative and Gradient Vector
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Directional derivative and gradient vector

When y is a unit vector, the directional derivative f ′(a; y) has
a simple geometric relation to the gradient vector.

Assume that ▽f (a) ̸= 0 and let θ denote the angle between y
and ▽f (a).

Then we have

f ′(a; y) = ▽f (a).y = ∥▽f (a)∥∥y∥ cos θ = ∥▽f (a)∥ cos θ.
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Directional derivative and gradient vector
Cont...

This shows that the directional derivative is simply the
component of the gradient vector in the direction of y.

The derivative is largest when cos θ = 1, that is, when y has
the same direction as ▽f (a).
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Directional derivative and gradient vector
Cont...

In other words, at a given point a, the scalar field undergoes
its maximum rate of change in the direction of the gradient
vector.

Moreover, this maximum is equal to the length of the gradient
vector.

When ▽f (a) is orthogonal to y, the directional derivative
f ′(a; y) is 0.
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Example 1

What is the directional derivative of the function
f (x , y) = 4x2 + y2 at the point x = 2 and y = 2 in the direction
of the vector u = 2i+ j.
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Example 1
Solution

The gradient is ▽f (x , y) = 8x i+2y j, which is at the point (2, 2) is
▽f (2, 2) = 16i+ 4j.

The direction is given by u = 2i+ j.

The unit vector û in the direction of u is
2i+ j√

5
. Hence,

f ′(a; û) = ▽f (a).û
= ▽f (2, 2).û

= (16i+ 4j) · 2i+ j√
5

=
36√
5
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Example 2

Find the direction in which the function

f (x , y) = sin x + ey−1

has the greatest rate of change at the point (0, 1).
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Example 2
Solution

At a given point, a scalar field undergoes its maximum rate of
change in the direction of the gradient vector.

The gradient is ▽f (x , y) = cos x i+ ey−1 j.

Thus, the gradient vector at (0, 1) is equal to
▽f (0, 1) = cos 0 i+ e1−1 j = i+ j.
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Exercise

Find the directional derivative of

f (x , y) =
1

1 + x2 + y2
,

at the point (1, 0) in the direction of the vector v = 4i+ 3j.

Answer is −2
5
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Chapter 3
Section 3.9

A Chain Rule for Derivatives of
Scalar Fields
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A function of a function

Consider the expression sin t2.

It is clear that this is different from the straightforward sine
function, sin t.

We are finding the sine of t2, not simply the sine of t.

We call such an expression a ”function of a function” or a
”composite function”.
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A function of a function
Cont...

Suppose, in general, that we have two functions, f (t) and
r(t).

Then g(t) = f [r(t)] is a function of a function.

In our case, the function f is the sine function and the
function r is the square function.

We could identify them more mathematically by saying that
f (t) = sin t and r(t) = t2, so that f [r(t)] = f (t2) = sin t2.
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The chain rule in one-dimensional space

In one-dimensional derivative theory, the chain rule enables us to
compute the derivative of a function of a function g(t) = f [r(t)]
by the formula

g ′(t) = f ′[r(t)].r ′(t).
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The chain rule in one-dimensional space
Examples

(i) y = sin x2

(ii) y = (2x − 3)12

(iii) y = ex
3

(iv) y = e1+x2

(v) y = sin(x + ex)
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The chain rule for derivatives of scalar fields

This Section provides an extension of the formula when f is
replaced by a scalar field defined on a set in n-space and r is
replaced by a vector-valued function of a real variable with values
in the domain of f .
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The chain rule for derivatives of scalar fields
Cont...

It is easy to conceive of examples in which the composition of
a scalar field and a vector field might arise.

For instance, suppose f (x) measures the temperature at a
point x of a solid in 3-space, and suppose we wish to know
how the temperature changes as the point x varies along a
curve C lying in the solid.

If the curve is described by a vector-valued function r defined
on an interval [a, b], we can introduce a new function g by
means of the formula

g(t) = f [r(t)] if a ≤ t ≤ b.
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The chain rule for derivatives of scalar fields
Cont...

This composite function g expresses the temperature as a
function of the parameter t, and its derivative g ′(t) measures
the rate of chage of the temperature along the curve.

The following extension of the chain rule enables us to
compute the derivative g ′(t) without determining g(t)
explicitly.
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Theorem 3.7
Chain rule

Let f be a scalar field defined on an open set S in Rn, and let r be
a vector-valued function which maps an interval J from R1 into S.
Define the composite function g = f ◦ r on J by the equation

g(t) = f [r(t)] if t ∈ J.

Let t be a point in J at which r′(t) exists and assume that f is
differentiable at r(t). Then g ′(t) exists and is equal to the dot
product

g ′(t) = ▽f (a).r′(t), where a = r(t). (15)
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Theorem 3.7
Chain rule⇒Proof

Let a = r(t), where t is a point in J at which r′(t) exists.

Since S is open there is an n-ball B(a) lying in S.

We take h ̸= 0 but small enough so that r(t + h) lies in B(a), and
we let y = r(t + h)− r(t).

Note that y → 0 as h → 0.

Now we have

g(t + h)− g(t) = f [r(t + h)]− f [r(t)]

= f (a+ y)− f (a). (16)
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Theorem 3.7
Chain rule⇒Proof

Applying the first-order Taylor formula for f we have

f (a+ y)− f (a) = ▽f (a).y + ∥y∥E (a, y), (17)

where E (a, y) → 0 as ∥y∥ → 0.

From (16) and (17) we have

g(t + h)− g(t) = ▽f (a).y + ∥y∥E (a, y).

Since y = r(t + h)− r(t) this gives us

g(t + h)− g(t)

h
= ▽f (a).r(t + h)− r(t)

h

+
∥r(t + h)− r(t)∥

h
E (a, y)
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Theorem 3.7
Chain rule⇒Proof

By letting h → 0 we obtain:

lim
h→0

g(t + h)− g(t)

h
= lim

h→0
▽f (a).r(t + h)− r(t)

h

+ lim
h→0

∥r(t + h)− r(t)∥
h

E (a, y)

lim
h→0

g(t + h)− g(t)

h
= ▽f (a). lim

h→0

r(t + h)− r(t)

h
+ 0

g ′(t) = ▽f (a).r′(t).
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Example 1
Directional derivative along a curve

When the function r describes a curve C , the derivative r′ is
the velocity vector (tangent to the curve) and derivative g ′ in
Equation (15) is the derivative of f with respect to the
velocity vector, assuming that r′ ̸= 0.

If T(t) is a unit vector in the direction of r′(t) (T is the unit
tangent vector), the dot product ▽f [r(t)].T(t) is called the
directional derivative of f along the curve C or in the
direction of C .
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Example 1
Directional derivative along a curve⇒Cont...

For a plane curve we can write

T(t) = cosα(t)i+ cosβ(t)j,

where α(t) and β(t) are the angles made by the vector T(t)
and the positive x- and y -axes; the directional derivative of f
along C becomes

▽f [r(t)].T(t) = D1f [r(t)] cosα(t) + D2f [r(t)] cosβ(t).
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Example 1
Directional derivative along a curve⇒Cont...

This formula is often written more briefly as

▽f .T =
∂f

∂x
cosα+

∂f

∂y
cosβ.

Since the directional derivative along C is defined in terms of
T, its value depends on the parametric representation chosen
for C .

A change of the representation could reverse the direction of
T; this in turn, would reverse the sign of the directional
derivative.
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Example 2

Find the directional derivative of the scalar field f (x , y) = x2 − 3xy
along the parabola y = x2 − x + 2 at the point (1,2).
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Example 2
Cont...

At an arbitary point (x , y) the gradient vector is

▽f (x , y) =
∂f

∂x
i+

∂f

∂y
j

= (2x − 3y)i− 3x j.

At the point (1,2) we have ▽f (1, 2) = −4i− 3j.

The parabola can be represented parametrically by the vector
equation r(t) = ti+ (t2 − t + 2)j.

Therefore r(1) = i+ 2j, r′(t) = i+ (2t − 1)j, and r′(1) = i+ j.

For this representation of C the unit tangent vector T(1) is
(i+ j)/

√
2 and the required directional derivative is

▽f (1, 2).T(1) = −7/
√
2.
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Example 3

Let f be nonconstant scalar field, differentiable everywhere in the
plane, and let c be a constant. Assume the Cartesian equation
f (x , y) = c describes a curve C having a tangent at each of its
points. Prove that f has the following properties at each point of
C :

(a) The gradient vector ▽f is normal to C .

(b) The directional derivative of f is zero along C .

(c) The directional derivative of f has its largest value in a
direction normal to C .
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Example 3
Cont...

If T is a unit tangent vector to C , the directional derivative of f
along C is the dot product ▽f .T.

This product is zero if ▽f is perpendicular to T, and it has its
largest value if ▽f is parallel to T.

Therefore both statements (b) and (c) are consequences of (a).

To prove (a), consider any plane curve Γ with a vector equation of
the form r(t) = X (t)i+ Y (t)j and introduce the function
g(t) = f [r(t)].
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Example 3
Cont...

By the chain rule we have g ′(t) = ▽f [r(t)].r′(t).

When Γ = C , the function g has the constant value c so g ′(t) = 0
if r(t) ∈ C .

Since g ′ = ▽f .r′, this shows that ▽f is perpendicular to r′ on C ;
hence ▽f is normal to C .
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Level sets

Let f be a scalar field defined on a set S in Rn and consider those
points x in S for which f (x) has a constant value, say f (x) = c .
Denote this set by L(c), so that

L(c) = {x|x ∈ S and f (x) = c}.

The set L(c) is called a level set of f . In R2, L(c) is called a level
curve; in R3, it is called a level surface.
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Level sets
Level curve

A level curve of a function f (x , y) is the curve of points (x , y)
where f (x , y) is some constant value.

A level curve is simply a cross section of the graph of
z = f (x , y) taken at a constant value, say z = c .

A function has many level curves, as one obtains a different
level curve for each value of c in the range of f (x , y).

We can plot the level curves for a bunch of different constants
c together in a level curve plot, which is sometimes called a
contour plot.
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Level sets
Level curve⇒Cont...

Figure: The graph of the function f (x , y) = −x2 − 2y2 is shown along
with a level curve plot.
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Level sets
Level curve⇒Cont...

Consider z = f (x , y) = 4x2 + y2.

The figure below shows the level curves, defined by
f (x , y) = c , of the surface.

The level curves are the ellipses 4x2 + y2 = c .

As the plot shows, the gradient vector at (x , y) is normal to
the level curve through (x , y).
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Level sets
Level surface

Now consider a scalar field f differentiable on an open set S in
R3, and examine one of its level surfaces, L(c).

Let a be a point on this surface, and consider a curve Γ which
lies on the surface and passes through a.

We shall prove that the gradient vector ▽f (a) is normal to
this curve at a.
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Level sets
Level surface⇒Cont...

That is, we shall prove that ▽f (a) is perpendicular to the
tangent vector of Γ at a.

For this purpose we assume that Γ is described parametrically
by a differentiable vector-valued function r defined on some
interval j in R1.

Since Γ lies on the level surface L(c), the function r satisfies
the equation

f [r(t)] = c for all t in j.
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Level sets
Level surface⇒Cont...

If g(t) = f [r(t)] for t in j, the chain rule states that

g ′(t) = ▽f [r(t)].r′(t).

Since g is a constant on j, we have g ′(t) = 0 on j. In
particular, choosing t1 so that r(t1) = a, we find that

▽f (a).r′(t1) = 0.

In other words, the gradient of f at a is perpendicular to the
tangent vector r′(t1), as asserted.
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Level sets
Level surface⇒Cont...

Now we take family of curves on the level surface L(c), all
passing through the point a.

According to the foregoing discussion, the tangent vectors of
all these curves are perpendicular to the gradient vector
▽f (a).

If ▽f (a) is not the zero vector, these tangent vectors
determine a plane, and the gradient ▽f (a) is normal to this
plane.

This particular plane is called as the tangent plane of the
surface L(c) at a.
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Level sets
Level surface⇒Cont...

We know that a plane through a with normal vector N
consists of all points x ∈ R3 satisfying N.(x− a) = 0.

Therefore the tangent plane to the level surface L(c) at a
consists of all x in R3 satisfying

▽f (a).(x− a) = 0.
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Level sets
Level surface⇒Cont...

To obtain a Cartesian equation for this plane we express x, a,
and ▽f (a) in terms of thier components.

Writing x = (x , y , z), a = (x1, y1, z1) and

▽f (a) = D1f (a)i+ D2f (a)j+ D3f (a)k,

we obtain the Cartesian equation

D1f (a)(x − x1) + D2f (a)(y − y1) + D3f (a)(z − z1) = 0.
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Level sets
Level surface⇒Cont...

A similar discussion applies to a scalar fields defined in R2.

In Example 3 we proved that the gradient vector ▽f (a) at a
point a of a level curve is perpendicular to the tangent vector
of the curve at a.

Therefore the tangent line of the level curve L(c) at a point
a = (x1, y1) has the Cartesian equation

D1f (a)(x − x1) + D2f (a)(y − y1) = 0.
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The equation of the tangent plane

Consider the surface z = f (x , y). If Z = f (X ,Y ), then (X ,Y ,Z )T

is a point on the surface z = f (x , y). If the surface admits a non
vertical tangent plane at (X ,Y ,Z )T , then we say that f is
differentiable at (X ,Y )T .

Figure: The tangent plane
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The equation of the tangent plane
Cont...

If f is differentiable at (X ,Y )T its tangent plane must have
equation

z − Z = fx(X ,Y )(x − X ) + fy (X ,Y )(y − Y ).

We usually write this in the less precise form

z − Z =
∂f

∂x
(X ,Y )(x − X ) +

∂f

∂y
(X ,Y )(y − Y ).

N.B Partial derivatives are to be evaluated at the point (X ,Y )T .
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Example

Let f (x , y) =
x − y

x + y
.

(a) Compute ∂f
∂x and ∂f

∂y .

(b) Find the equation of the tangent plane to the surface
z = f (x , y) where x = 1 and y = 1.
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Example
Solution

(a)

f (x , y) =
x − y

x + y

∂f

∂x
=

(x + y).1− (x − y).1

(x + y)2

=
2y

(x + y)2
.

∂f

∂y
=

(x + y).(−1)− (x − y).1

(x + y)2

=
−2x

(x + y)2
.
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Example
Solution

(b) The tangent plane must have equation

z − Z = fx(X ,Y )(x − X ) + fy (X ,Y )(y − Y ).

The equation of the tangent plane to the surface z = f (x , y),
where X = 1 and Y = 1 is

z − Z = fx(1, 1)(x − 1) + fy (1, 1)(y − 1),

where Z = f (1, 1). The required equation is

z =
1

2
(x − 1)− 1

2
(y − 1).
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Thank you!
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