Real Analysis III (MAT312 β)

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Chapter 2

Limits and Continuity

Chapter 2
Section 2.1

Limits of Functions

Why do we need limit?

■ In some situations, we cannot work something out directly.

- But we can see how it behaves as we get closer and closer.
- Let's consider the function $f(x)=\frac{\left(x^{2}-1\right)}{(x-1)}$.
- Let's work it out for $x=1$:

$$
f(1)=\frac{\left(1^{2}-1\right)}{(1-1)}=\frac{0}{0} .
$$

Why do we need limit?

Cont...

- We don't really know the value of $0 / 0$.
- So we need another way of answering this.
- The limits can be used to give an answer in such a situations.

Why do we need limit?

Cont...

Instead of trying to work it out for $x=1$, let's try approaching it closer and closer from $x<1$:

x	$\frac{\left(x^{2}-1\right)}{(x-1)}$
0.5	1.50000
0.9	1.90000
0.99	1.99000
0.999	1.99900
0.9999	1.99990
0.99999	1.99999
\ldots	\ldots

Why do we need limit?

Cont...

Instead of trying to work it out for $\mathrm{x}=1$, let's try approaching it closer and closer from $x>1$:

x	$\frac{\left(x^{2}-1\right)}{(x-1)}$
1.5	2.50000
1.1	2.10000
1.01	2.01000
1.001	2.00100
1.0001	2.00010
1.00001	2.00001
\ldots	\ldots

Why do we need limit?

- Now we can see that as x gets close to 1 , then $\left(x^{2}-1\right) /(x-1)$ gets close to 2 .
- When $x=1$ we don't know the answer.

■ But we can see that it is going to be 2 .

Why do we need limit?

■ We want to give the answer "2" but can't, so instead mathematicians say exactly what is going on by using the special word "limit".

The limit of $\left(x^{2}-1\right) /(x-1)$ as x approaches 1 is 2 .

- It can be written symbolically as:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2
$$

Right and left hand limits

If $f(x)$ approaches the value p as x approaches to c, we say p is the limit of the function $f(x)$ as x tends to c. That is

$$
\lim _{x \rightarrow c} f(x)=p .
$$

Then we can define right and left hand limit as follows:

$$
\begin{aligned}
& \lim _{x \rightarrow c^{-}} f(x)=p \Leftarrow \text { Left Hand Limit, } \\
& \lim _{x \rightarrow c^{+}} f(x)=p \Leftarrow \text { Right Hand Limit. }
\end{aligned}
$$

Example 1

Use the graph to determine following limits:
(a) $\lim _{x \rightarrow 1} f(x)$
(b) $\lim _{x \rightarrow 2} f(x)$
(c) $\lim _{x \rightarrow 3} f(x)$
(d) $\lim _{x \rightarrow 4} f(x)$

Example 1

Solution

(a) $\lim _{x \rightarrow 1} f(x)=2$
(b) $\lim _{x \rightarrow 2} f(x)=1$
(c) $\lim _{x \rightarrow 3} f(x) \Leftarrow$ does not exist
(d) $\lim _{x \rightarrow 4} f(x)=1$

Example 2

The function f is defined by:

$$
f(x)= \begin{cases}x+3 & \text { if } x \leq 2 \\ -x+7 & \text { if } x>2\end{cases}
$$

What is $\lim _{x \rightarrow 2} f(x)$.

Example 2

Solution

Let's consider the left and right hand side limits:

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} x+3=5 \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}}-x+7=5
\end{aligned}
$$

We get same value for left and right hand limits. Hence

$$
\lim _{x \rightarrow 2} f(x)=5
$$

Limits of functions of one variable

- When we write $\lim _{x \rightarrow a} f(x)=L$, we mean that f can be made as close as we want to L, by taking x close enough to a but not equal to a.

■ In here the function f has to be defined near a, but not necessarily at a.

- The purpose of limit is to determine the behavior of $f(x)$ as x gets closer to a.

Limits of functions of several variables

- The domain of functions of two variables is a subset of \mathbb{R}^{2}, in other words it is a set of pairs.
- A point in R^{2} is of the form (x, y).
- So, the equivalent of $\lim _{x \rightarrow a} f(x)$ will be $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$.
- For functions of three variables, the equivalent of $\lim _{x \rightarrow a} f(x)$ will be $\lim _{(x, y, z) \rightarrow(a, b, c)} f(x, y, z)$, and so on.

Difficulty of getting limits of functions of several variables

■ While x could only approach a from two directions, from the left or from the right, (x, y) can approach (a, b) from infinitely many directions.

■ In fact, it does not even have to approach (a, b) along a straight path as shown in figure.

Difficulty of getting limits of functions of several variables

 Cont...■ With functions of one variable, one way to show a limit existed, was to show that the limit from both directions existed and were equal.

- That is $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$.
- Equivalently, when the limits from the two directions were not equal, we concluded that the limit did not exist.

Difficulty of getting limits of functions of several variables

 Cont...■ For functions of several variables, we would have to show that the limit along every possible path exist and are the same.

■ The problem is that there are infinitely many such paths.

- To show a limit does not exist, it is still enough to find two paths along which the limits are not equal.

■ In view of the number of possible paths, it is not always easy to know which paths to try.

Example 1

Find the limit

$$
\lim _{(x, y) \rightarrow(2,3)} \frac{3 x^{2} y}{x^{2}+y^{2}} .
$$

Example 1

Solution

Notice that the point $(2,3)$ does not cause division by zero or other domain issues. So,

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(2,3)} \frac{3 x^{2} y}{x^{2}+y^{2}} & =\frac{3(2)^{2}(3)}{(2)^{2}+(3)^{2}} \\
& =\frac{36}{13} .
\end{aligned}
$$

Example 1

Solution \Rightarrow Cont...

Figure: The function of $\frac{3 x^{2} y}{x^{2}+y^{2}}$.

Past Paper 2013

Example 2

Find the following limits:
(i) $\lim _{(x, y) \rightarrow(2,2)} \frac{x^{3}-y^{3}}{x-y}$.
(ii) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}$.

Past Paper 2013

Example $2 \Rightarrow$ Solution
(i)

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(2,2)} \frac{x^{3}-y^{3}}{x-y} & =\lim _{(x, y) \rightarrow(2,2)} \frac{(x-y)\left(x^{2}+x y+y^{2}\right)}{x-y} \\
& =\lim _{(x, y) \rightarrow(2,2)} x^{2}+x y+y^{2} \\
& =12 .
\end{aligned}
$$

Past Paper 2013

Example $2 \Rightarrow$ Solution
(ii)

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}} & =\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}-x y\right)(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{(x(x-y))(\sqrt{x}+\sqrt{y})}{(x-y)} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{x \cdot(\sqrt{x}+\sqrt{y})}{1} \\
& =0 .
\end{aligned}
$$

Example 3

Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}} .
$$

Example 3

Solution

$$
\begin{aligned}
\text { Let } x=0 \Rightarrow & =\frac{x^{2}}{x^{2}+y^{2}} \\
& =\frac{0}{0+y^{2}} \\
& =0 \\
\text { Let } y=0 \Rightarrow & =\frac{x^{2}}{x^{2}+y^{2}} \\
& =\frac{x^{2}}{x^{2}+0} \\
& =\frac{x^{2}}{x^{2}} \\
& =1
\end{aligned}
$$

Since we got two different results, the limit does not exist.

Example 3
 Solution \Rightarrow Cont...

z

Figure: The function of $\frac{x^{2}}{x^{2}+y^{2}}$.

Example 4

Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}-y^{2}}{x^{2}+y^{2}} .
$$

Example 4

Solution

$$
\begin{aligned}
\text { Let } x=0 \Rightarrow & =\frac{3 x^{2}-y^{2}}{x^{2}+y^{2}} \\
& =\frac{-y^{2}}{y^{2}} \\
& =-1 \\
\text { Let } y=0 \Rightarrow & =\frac{3 x^{2}-y^{2}}{x^{2}+y^{2}} \\
& =\frac{3 x^{2}}{x^{2}} \\
& =3
\end{aligned}
$$

Again, the limit does not exist.

Example 4

Solution \Rightarrow Cont...

Figure: The function of $\frac{3 x^{2}-y^{2}}{x^{2}+y^{2}}$.

Example 5

Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}} .
$$

Example 5

Solution

$$
\begin{aligned}
\text { Let } x=0 \Rightarrow & =\frac{x y}{x^{2}+y^{2}} \\
& =\frac{0 y}{0+y^{2}}=0 \\
\text { Let } y=0 \Rightarrow & =\frac{x y}{x^{2}+y^{2}} \\
& =\frac{x 0}{x^{2}+0}=0
\end{aligned}
$$

We approached $(0,0)$ from two different directions and got the same result, but it doesnt necessarily mean $f(x, y)$ has that limit.

Example 5
 Solution \Rightarrow Cont...

Figure: The function of $\frac{x y}{x^{2}+y^{2}}$.

Example 5

Let $(x, y) \rightarrow(0,0)$ along the line $y=m x$. Then

$$
\begin{aligned}
\frac{x y}{x^{2}+y^{2}} & =\frac{x(m x)}{x^{2}+(m x)^{2}} \\
& =\frac{m x^{2}}{x^{2}+m^{2} x^{2}} \\
& =\frac{m}{1+m^{2}}
\end{aligned}
$$

This shows that the limit depends on the choice of m. Therefore, the limit does not exist.

Past Paper 2013

Example 6

Prove that the following limits do not exist.
(i) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{2} x^{2}-y^{2}}{x^{2}+y^{2}}$.
(ii) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$.

Past Paper 2013

Example $6 \Rightarrow$ Solution
(i)

$$
\begin{aligned}
\text { Let } x=0 \Rightarrow & =\frac{\sqrt{2} x^{2}-y^{2}}{x^{2}+y^{2}} \\
& =\frac{-y^{2}}{y^{2}} \\
& =-1 \\
\text { Let } y=0 \Rightarrow & =\frac{\sqrt{2} x^{2}-y^{2}}{x^{2}+y^{2}} \\
& =\frac{\sqrt{2} x^{2}}{x^{2}} \\
& =\sqrt{2} .
\end{aligned}
$$

Since we got two different results, the limit does not exist.

Past Paper 2013

Example $6 \Rightarrow$ Solution
(ii) If we compute the limit along the paths $x=0, y=0, y=x$, we obtain 0 every time. In fact, the limit along any straight path through $(0,0)$ is 0 .
The equation of such a path is $y=m x$. Along this path, we get

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}} & =\lim _{(x, m x) \rightarrow(0,0)} \frac{x^{2}(m x)}{x^{4}+(m x)^{2}} \\
& =\lim _{(x, m x) \rightarrow(0,0)} \frac{m x^{3}}{x^{4}+m^{2} x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{m x^{3}}{x^{2}\left(x^{2}+m^{2}\right)} \\
& =\lim _{x \rightarrow 0} \frac{m x}{\left(x^{2}+m^{2}\right)} \\
& =0
\end{aligned}
$$

Past Paper 2013

Example $6 \Rightarrow$ Solution

However, we will get a different answer along the path $y=x^{2}$.

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}} & =\lim _{\left(x, x^{2}\right) \rightarrow(0,0)} \frac{x^{2} x^{2}}{x^{4}+\left(x^{2}\right)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{x^{4}}{2 x^{4}} \\
& =\frac{1}{2} .
\end{aligned}
$$

This proves that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$ does not exist.

Remark

- If we approach (a, b) from two different directions and get two different results, then $f(x, y)$ does not have a limit.
- If we approach (a, b) from two different directions and get the same result, then it doesnt necessarily mean $f(x, y)$ has that limit.
- We have to get the same limit no matter from which direction we approach (a, b).
- To do this, we would sometimes have to use the definition of the limit of a function of two variables in order to ensure that we have the correct limit.

The $\epsilon \delta$-definition of limit

The function $f(x, y)$ has the limit L as $(x, y) \rightarrow(a, b)$ provided that for every $\epsilon>0$ there exists a $\delta>0$ such that $|f(x, y)-L|<\epsilon$ whenever $0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$.

The $\epsilon \delta$-definition of limit

To convert basic definition of $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ into above formal definition, we replace the phrase,

- " $f(x, y)$ is arbitrarily close to L " with " $|f(x, y)-L|<\epsilon$ for an arbitrarily small positive number ϵ," and,
- " for all $(x, y) \neq(a, b)$ sufficiently close to (a, b) " with "for all (x, y) with $0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$ for a sufficiently small positive number δ."

The $\epsilon \delta$-definition of limit

Cont...

When we use the definition of a limit to show that a particular limit exists, we usually employ certain key or basic inequalities such as:
$1|x|<\sqrt{x^{2}+y^{2}}$
$2 \frac{x}{x+1}<1$
3 $|y|<\sqrt{x^{2}+y^{2}}$
$4 \frac{x^{2}}{x^{2}+y^{2}}<1$
$5|x-a|=\sqrt{(x-a)^{2}} \leq \sqrt{(x-a)^{2}+(y-a)^{2}}$

Example 5

Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}} .
$$

Example 5

Solution

$$
\begin{aligned}
\text { Let } x=0 \Rightarrow & =\frac{x^{2} y}{x^{2}+y^{2}} \\
& =\frac{0}{0+y^{2}}=0 \\
\text { Let } y=0 \Rightarrow & =\frac{x^{2} y}{x^{2}+y^{2}} \\
& =\frac{0}{x^{2}}=0
\end{aligned}
$$

We suspect that the limit might be zero. Let's try the definition with $L=0$.

Example 5

 Solution \Rightarrow Cont...$$
\begin{aligned}
&|f(x, y)-L|<\epsilon \text { whenever } 0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta \\
&|f(x, y)-L|<\epsilon \\
&\left|\frac{x^{2} y}{x^{2}+y^{2}}-0\right|<\epsilon \\
&\left|\frac{x^{2} y}{x^{2}+y^{2}}\right|<\epsilon \\
&|y|\left|\frac{x^{2}}{x^{2}+y^{2}}\right|<\epsilon
\end{aligned}
$$

Example 5

 Solution \Rightarrow Cont...Now, since $\left|\frac{x^{2}}{x^{2}+y^{2}}\right|<1$ then $|y|\left|\frac{x^{2}}{x^{2}+y^{2}}\right|<|y|$. So we then have
$|y|\left|\frac{x^{2}}{x^{2}+y^{2}}\right|<|y|<\sqrt{x^{2}+y^{2}}=\sqrt{(x-0)^{2}+(y-0)^{2}}<\delta$

Therefore, if $\delta=\epsilon$, the definition shows the limit does equal zero.

Chapter 2
Section 2.2

Continuity of Functions

What is a continuous function?

- A function is continuous when its graph is a single unbroken curve.

■ Simply, a function is continuous at a point if it does not have a break or gap in its value at that point.

What is a discontinuous function?

■ All functions are not continuous.

- If a function is not continuous at a point in its domain, one says that it has a discontinuity there.

Definition

Continuity of a function of one variable

A function $f(x)$ defined in a neighborhood of a point a and also at a is said to be continuous at $x=a$, if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Example 1

Show that the following function is not continuous at $x=2$:

$$
f(x)= \begin{cases}-1 & \text { if } x \leq 2 \\ x^{2}+x & \text { if } x>2\end{cases}
$$

Example 1

Solution

$$
\begin{align*}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}-1=-1 \tag{1}\\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} x^{2}+x=6 \tag{2}
\end{align*}
$$

Since $(1) \neq(2)$, the limit does not exist even though $f(2)=-1$.
Hence f is not continuous at $x=2$.

Example 2

Check the continuity of the function:

$$
f(x)= \begin{cases}\frac{x^{3}-1}{x^{2}-1} & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}
$$

Example 2

Solution

$$
\begin{align*}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} \frac{x^{3}-1}{x^{2}-1}=\frac{3}{2} \tag{3}\\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} \frac{x^{3}-1}{x^{2}-1}=\frac{3}{2} \tag{4}
\end{align*}
$$

Since $(3)=(4)$, the limit exist at $x=1$.
But $\lim _{x \rightarrow 1} f(x) \neq f(1)$.
Hence f is not continuous at $x=1$.

Definition

Continuity of a function of several variables

We consider a function $\mathbf{f}: \mathbf{S} \rightarrow \mathbb{R}^{m}$, where \mathbf{S} is a subset of \mathbb{R}^{n}. A function \mathbf{f} is said to be continuous at a if \mathbf{f} is defined at a and if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a})
$$

We say that \mathbf{f} is continuous on a set \mathbf{S} if \mathbf{f} is continuous at each point of S.

Continuity of functions of one variable and several variables

- Many familiar properties of limits and continuity of function of one variable can also be extended for function of several variables.
- For example, the usual theorems concerning limits and continuity of sums, products, and quotients also hold for scalar fields.
- For vector fields, quotients are not defined but we have the following theorem concerning sums, multification by scalars, inner products, and norms.

Theorem (2.1)

If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{b}$ and $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{g}(\mathbf{x})=\mathbf{c}$, then we also have:
(a) $\lim _{\mathrm{x} \rightarrow \mathrm{a}}[\mathrm{f}(\mathbf{x})+\mathbf{g}(\mathbf{x})]=\mathbf{b}+\mathbf{c}$.
(b) $\lim _{x \rightarrow \mathbf{a}} \lambda \mathbf{f}(\mathbf{x})=\lambda \mathbf{b}$ for every scalar λ.
(c) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\mathbf{b} \cdot \mathbf{c}$.
(d) $\lim _{\mathbf{x} \rightarrow \mathbf{a}}\|\mathbf{f}(\mathbf{x})\|=\|\mathbf{b}\|$.

Continuity and components of a vector field

If a vector field \mathbf{f} has values in \mathbb{R}^{m}, each function value $\mathbf{f}(\mathbf{x})$ has m components and we can write

$$
\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)
$$

The m scalar fields $f_{1}, f_{2}, \ldots, f_{m}$ are called components of the vector field \mathbf{f}.

We shall prove that \mathbf{f} is continuous at a point \mathbf{a} if, and only if, each components f_{k} is continuous at that point.
\mathbf{f} is cts at $\mathbf{a} \in \mathbb{R}^{n} \Longleftrightarrow$ Each $f_{k}(k=1,2, \ldots, m)$ is cts at $\mathbf{a} \in \mathbb{R}^{n}$

Continuity and components of a vector field Proof

Let \mathbf{e}_{k} denote the $k^{\text {th }}$ unit coordinate vector.
All the components of \mathbf{e}_{k} are 0 except the $k^{\text {th }}$, which is equal to 1 .
That is $\mathbf{e}_{k}=(0,0, \ldots, 0,1,0, \ldots, 0)$. Then $f_{k}(\mathbf{x})$ is given by the dot product and

$$
\begin{aligned}
f_{k}(\mathbf{x}) & =\mathbf{f}(\mathbf{x}) \cdot \mathbf{e}_{k} \\
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f_{k}(\mathbf{x}) & =\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x}) \cdot \mathbf{e}_{k} \\
& =\mathbf{f}(\mathbf{a}) \cdot \mathbf{e}_{k} \\
& =\left(f_{1}(\mathbf{a}), f_{2}(\mathbf{a}), \ldots, f_{k}(\mathbf{a}), \ldots, f_{m}(\mathbf{a})\right) \cdot(0,0, \ldots, 0,1,0, \ldots, 0) \\
& =f_{k}(\mathbf{a})
\end{aligned}
$$

Therefore, it implies that each point of continuity of \mathbf{f} is also a point of continuity of f_{k}.

Continuity and components of a vector field

 ProofMoreover, since we have

$$
\mathbf{f}(\mathbf{x})=\sum_{k=1}^{m} f_{k}(\mathbf{x}) \mathbf{e}_{k}
$$

repeated application of parts (a) and (b) of above theorem shows that a point of continuity of all m components f_{1}, \ldots, f_{m} is also a point of continuity of \mathbf{f}.

Continuity of the identity function

The identity function $\mathbf{f}(\mathbf{x})=\mathbf{x}$, is continuous everywhere in \mathbb{R}^{n}. Therefore its components are also continuous everywhere in \mathbb{R}^{n}. These are the n scalar fields given by

$$
f_{1}(\mathbf{x})=x_{1}, f_{2}(\mathbf{x})=x_{2}, \ldots, f_{n}(\mathbf{x})=x_{n}
$$

Continuity of the linear transformations

Let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. We will prove that \mathbf{f} is continuous at each point a in \mathbb{R}^{n}.

Continuity of the linear transformations

Proof

For the continuity of \mathbf{f}, we must show that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \mathbf{f}(\mathbf{a}+\mathbf{h})=\mathbf{f}(\mathbf{a})
$$

By linearity we have

$$
\mathbf{f}(\mathbf{a}+\mathbf{h})=\mathbf{f}(\mathbf{a})+\mathbf{f}(\mathbf{h}) .
$$

It is suffices to show that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \mathbf{f}(\mathbf{h})=\mathbf{0}
$$

Continuity of the linear transformations

Proof \Rightarrow Cont...
Let us write

$$
\mathbf{h}=h_{1} \mathbf{e}_{1}+h_{2} \mathbf{e}_{2}+\ldots+h_{n} \mathbf{e}_{n} .
$$

Using linearity again we find that

$$
\mathbf{f}(\mathbf{h})=h_{1} \mathbf{f}\left(\mathbf{e}_{1}\right)+h_{2} \mathbf{f}\left(\mathbf{e}_{2}\right)+\ldots+h_{n} \mathbf{f}\left(\mathbf{e}_{n}\right) .
$$

Then by taking limit from both side we have,

$$
\begin{aligned}
& \lim _{\mathbf{h} \rightarrow 0} \mathbf{f}(\mathbf{h})=\lim _{\mathbf{h} \rightarrow 0} \sum_{i=1}^{n} h_{i} \mathbf{f}\left(\mathbf{e}_{i}\right) \\
& \lim _{\mathbf{h} \rightarrow 0} \mathbf{f}(\mathbf{h})=\sum_{i=1}^{n} \lim _{\mathbf{h} \rightarrow 0} h_{i} \mathbf{f}\left(\mathbf{e}_{i}\right) .
\end{aligned}
$$

Continuity of the linear transformations

$$
\begin{aligned}
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \mathbf{f}(\mathbf{h}) & =\sum_{i=1}^{n} \mathbf{f}\left(\mathbf{e}_{i}\right) \lim _{\mathbf{h} \rightarrow \mathbf{0}} h_{i} \\
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \mathbf{f}(\mathbf{h}) & =\sum_{i=1}^{n} \mathbf{f}\left(\mathbf{e}_{i}\right) 0 \\
& =\mathbf{0}
\end{aligned}
$$

Theorem (2.2)

Let \mathbf{f} and \mathbf{g} be functions such that the composite function ($\mathbf{f} \circ \mathbf{g}$) is defined at \mathbf{a}, where

$$
(\mathbf{f} \circ \mathbf{g})(\mathbf{x})=\mathbf{f}[\mathbf{g}(\mathbf{x})]
$$

If \mathbf{g} is continuous at \mathbf{a} and if \mathbf{f} is continuous at $\mathbf{g}(\mathbf{a})$, then the composition ($\mathbf{f} \circ \mathbf{g}$) is continuous at a.

Theorem (2.2)
Proof

Let $\mathbf{y}=\mathbf{g}(\mathbf{x})$ and $\mathbf{b}=\mathbf{g}(\mathbf{a})$. Then we have

$$
\mathrm{f}[\mathrm{~g}(\mathrm{x})]-\mathrm{f}[\mathrm{~g}(\mathrm{a})]=\mathrm{f}(\mathrm{y})-\mathrm{f}(\mathrm{~b})
$$

By hypothesis, $\mathbf{y} \rightarrow \mathbf{b}$ as $\mathbf{x} \rightarrow \mathbf{a}$, so we have

$$
\begin{aligned}
\lim _{\|x-a\| \rightarrow 0}\|f[g(x)]-\mathbf{f}[g(a)]\| & =\lim _{\|y-b\| \rightarrow 0}\|f(y)-\mathbf{f}(\mathbf{b})\| \\
\lim _{\|x-a\| \rightarrow 0}\|f[g(x)]-\mathbf{f}[g(a)]\| & =0 \\
\lim _{x \rightarrow a} f[g(x)] & =\mathbf{f}[g(a)] .
\end{aligned}
$$

So, $(\mathbf{f} \circ \mathbf{g})$ is continuous at \mathbf{a}.

Example 1

Discuss the continuity of following functions.
$1 \sin \left(x^{2} y\right)$
[2 $\log \left(x^{2}+y^{2}\right)$
$3 \frac{e^{x+y}}{x+y}$
(4) $\log \left[\cos \left(x^{2}+y^{2}\right)\right]$

Example 1

Solution

These examples are continuous at all points at which the functions are defined.

1 The first is continuous at all points in the plane.
$\boxed{2}$ The second at all points except the origin.
3 The third is continuous at all points (x, y) at which $x+y \neq 0$.
4. The fourth at all points at which $x^{2}+y^{2}$ is not an odd multiple of $\pi / 2$. The set of (x, y) such that $x^{2}+y^{2}=n \pi / 2$, $n=1,3,5, \ldots$, is a family of circles centered at the origin.

Remark 1

These examples show that the discontinuities of a function of two variables may consist of isolated points, entire curves, or families of curves.

Remark 2

A function of two variables may be continuous in each variable separately and yet be discontinuous as a function of the two variables together.

Example

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}} \text { if }(x, y) \neq(0,0), f(0,0)=0
$$

■ For points (x, y) on the x-axis we have $y=0$ and $f(x, y)=f(x, 0)=0$, so the function has constant value 0 everywhere on the x-axis.

- Therefore, if we put $y=0$ and think of f as a function of x alone, f is continuous at $x=0$.

■ Similarly, f has constant value 0 at all points on y-axis, so if we put $x=0$ and think of f as a function of y alone, f is continuous at $y=0$.

Example

- However, as a function of two variables, f is not continuous at the origin.
- In fact, at each point of the line $y=x$ (except the origin) the function has the constant value $1 / 2$ because $f(x, x)=x^{2} /\left(2 x^{2}\right)=1 / 2$.
- Since there are points on this line which are close to the origin and since $f(0,0) \neq 1 / 2$, the function is not continuous at $(0,0)$.

Remark 3

If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$, and if the one dimensional limits

$$
\lim _{x \rightarrow a} f(x, y) \text { and } \lim _{y \rightarrow b} f(x, y)
$$

both exists, prove that

$$
\lim _{x \rightarrow a}\left(\lim _{y \rightarrow b} f(x, y)\right)=\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right)=L
$$

Remark 3

Cont...

The two limits in the above equation are called iterated limits; the example shows that the existence of two-dimensional limit and of the two one-dimensional limits implies the existence and equality of the two iterated limits. (The converse is not always true).

Remark 3

Cont...

Since $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$, we have

$$
\begin{aligned}
& \Rightarrow \quad \lim _{\|(x, y)-(a, b)\| \rightarrow 0}\|f(x, y)-L\|=0 \\
& \Rightarrow \quad \lim _{\sqrt{(x-a)^{2}+(y-b)^{2}} \rightarrow 0}\|f(x, y)-L\|=0 \\
& \Rightarrow \quad \lim _{x \rightarrow a} \text { and } \lim _{y \rightarrow b}\|f(x, y)-L\|=0 \rightarrow(\mathrm{~A}) .
\end{aligned}
$$

Remark 3

Cont...

Since one-dimensional limits, $\lim _{x \rightarrow a} f(x, y)$ and $\lim _{y \rightarrow b} f(x, y)$ both exists, let $\lim _{x \rightarrow a} f(x, y)=g(y)$ and $\lim _{y \rightarrow b} f(x, y)=h(x)$. Then we have,

$$
\begin{aligned}
& \lim _{|x-a| \rightarrow 0}\|f(x, y)-g(y)\|=0 \rightarrow(\mathrm{~B}) \\
& \lim _{|y-b| \rightarrow 0}\|f(x, y)-h(x)\|=0 \rightarrow(\mathrm{C}) .
\end{aligned}
$$

Remark 3

Cont...

Now let us consider $\|h(x)-L\|$. Then

$$
\begin{aligned}
\|h(x)-L\| & =\|f(x, y)-f(x, y)+h(x)-L\| \\
\|h(x)-L\| & \leq\|f(x, y)-L\|+\|f(x, y)-h(x)\|
\end{aligned}
$$

Letting $\lim _{x \rightarrow a}$ and $\lim _{y \rightarrow b}$ we have

$$
\begin{aligned}
\lim _{x \rightarrow a} \text { and } \lim _{y \rightarrow b}\|h(x)-L\| \leq & \lim _{x \rightarrow a} \text { and } \lim _{y \rightarrow b}\|f(x, y)-L\|+ \\
& \lim _{x \rightarrow a} \text { and } \lim _{y \rightarrow b}\|f(x, y)-h(x)\| \\
\leq & 0+0(\text { From (A) and (C)). }
\end{aligned}
$$

Remark 3

Cont...

$$
\begin{aligned}
& \Rightarrow \quad \lim _{x \rightarrow a} \text { and } \lim _{y \rightarrow b}\|h(x)-L\| \leq 0 \\
& \Rightarrow \quad \lim _{x \rightarrow a}\|h(x)-L\| \leq 0 \\
& \Rightarrow \quad \lim _{x \rightarrow a}\|h(x)-L\|=0 \\
& \Rightarrow \quad \lim _{x \rightarrow a} h(x)=L \\
& \Rightarrow \quad \lim _{x \rightarrow a}\left(\lim _{y \rightarrow b} f(x, y)\right)=L .
\end{aligned}
$$

Similarly we can show that

$$
\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right)=L
$$

Example

Let $f(x, y)=\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}}$, whenever $x^{2} y^{2}+(x-y)^{2} \neq 0$.
Show that

$$
\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right)=\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right)=0
$$

but that $f(x, y)$ does not tend to a limit as $(x, y) \rightarrow(0,0)$.
[Hint: Examine f on the line $y=x$.]

Example

Consider the limit, $\lim _{y \rightarrow 0} f(x, y)$,

$$
\begin{aligned}
\lim _{y \rightarrow 0} f(x, y) & =\lim _{y \rightarrow 0} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \\
& =0 \\
\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right) & =\lim _{x \rightarrow 0}(0) \\
& =0 \rightarrow(1) .
\end{aligned}
$$

Example

Cont...

Consider the limit, $\lim _{x \rightarrow 0} f(x, y)$,

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x, y) & =\lim _{x \rightarrow 0} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \\
& =0 \\
\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right) & =\lim _{y \rightarrow 0}(0) \\
& =0 \rightarrow(2) .
\end{aligned}
$$

From (1) and (2) we have,

$$
\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right)=\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right)=0
$$

Example

Cont...

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} f(x, y) & =\lim _{(x, x) \rightarrow(0,0)} f(x, x) \\
& =\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}+0} \\
& =1
\end{aligned}
$$

But we know that limit of a function should be unique. But above gives that the function has two limits 1 and 0 . That is limit is not unique.
Therefore $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exists.

Thank you!

