Mathematical Computing IMT2b2 β

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Minima and Maxima of Univariate Functions

Introduction

■ When using mathematics to model the physical world in which we live, we frequently express physical quantities in terms of variables.

- Then, functions are used to describe the ways in which these variables change.
- A scientist or engineer will be interested in the ups and downs of a function, its maximum and minimum values, its turning points.

How do we locate maximum and minimum points?

■ Drawing a graph of a function using a computer graph plotting package will reveal behaviour of the function.

- But if we want to know the precise location of maximum and minimum points, we need to turn to algebra and differential calculus.
- In this section we look at how we can find maximum and minimum points in this way.

Local maximum and local minimum

- The local maximum and local minimum (plural: maxima and minima) of a function, are the largest and smallest value that the function takes at a point within a given interval.
- It may not be the minimum or maximum for the whole function, but locally it is.

Local maximum and local minimum Local maximum

- To define a local maximum, we need to consider an interval.
- Then a local maximum is the point where, the height of the function at a is greater than (or equal to) the height anywhere else in that interval.
- Or, more briefly:
$f(a) \geq f(x)$ for all x in the interval.

Local maximum and local minimum Local minimum

■ To define a local minimum, we need to consider an interval.
■ Then a local minimum is the point where, the height of the function at a is lowest than (or equal to) the height anywhere else in that interval.

- Or more briefly:

$$
f(a) \leq f(x) \text { for all } x \text { in the interval. }
$$

Global (or Absolute) Maximum and Minimum

- The maximum or minimum over the entire function is called an absolute or global maximum or minimum.
- There is only one global maximum.
- And also there is only one global minimum.
- But there can be more than one local maximum or minimum.

How to classify stationay points?

Extrema of a univariate function \mathbf{f} can be found by the following well-known method:

1 Find the critical points of \mathbf{f}, i.e., points a with $\mathbf{f}^{\prime}(\mathbf{a})=\mathbf{0}$.
2 Compute the second derivative $\mathbf{f}^{\prime \prime}$ and check its sign at these critical points.

- If $\mathbf{f}^{\prime \prime}(\mathbf{a})>0$, then \mathbf{a} is a local minimum.
- If $\mathbf{f}^{\prime \prime}(\mathbf{a})<0$, then \mathbf{a} is a local maximum.
- If $\mathbf{f}^{\prime \prime}(\mathbf{a})=0$, then we need higher order derivatives at \mathbf{a} for a decision.

How to use to Maxima to classify stationay points?

- It is always a good idea to plot the graph of the function.

■ In order to find all critical points we have to compute the first derivative \mathbf{f}^{\prime} and find all its roots.

■ Next we have to evaluate the second derivative $\mathbf{f}^{\prime \prime}$ at all these critical points and check the signs of the results.

Example

Find the stationary points of $f(x)=x^{4}-3 x^{2}+2$ and determine the nature of these points.

Thank You

