Mathematical Computing $IMT2b2\beta$

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Graphics in Maxima

- **Gnuplot** is a comand-line oriented plot program.
- Maxima's plotting is based on the Gnuplot, which allows for plotting of two and three dimensional functions, and datasets.
- Maxima's ploting commands collect the functions and parameters, and passes them all to Gnuplot for plotting.
- Gnuplot is bundled with Maxima (Windows version), so there is no need to install it separately.

Gnuplot Interfaces

- Two various **Gnuplot** interfaces are available.
- First one is the Maxima standard functions with the stem plot in the function names.
- Second one is the routines of the additional package Draw with the stem draw in the function names.

Gnuplot Interfaces

Graphic Interface Plot

- Displays a plot of one or more expressions as a function of one or more variables or parameters.
- plot2d displays one or several plots in two dimensions.
- plot3d displays a plot of one or more surfaces defined as functions of two variables or in parametric form.
- A plot can also be defined in the discrete or parametric forms.
- The abilities of Maximas plot command are a bit restricted and do not satisfy all needs.

Gnuplot Interfaces Graphic Interface Draw

- Package draw provides a more powerful and flexible plotting and offer much more possibilities to adapt the graphics with the aid of options to particular requirements.
- ▶ Furthermore it is possible, to set output format (eps, png, jpg, etc.) and output target (i. e. the filename) in the **Gnuplot** console after the graphic has been produced.
- Before we can use the package it must be loaded using load(draw).

Methods of Displaying the Graphics

Two various methods for displaying the graphics are possible.

- 1. Graph popping up in separate window.
- 2. Ploting into the wxMaxima working window.

Methods of Displaying the Graphics Graph Popping Up in Separate Window

- When calling the standard plotting routines plot2d, plot3d, draw2d, draw3d, etc., a Gnuplot output window containing the graphic is popping up.
- The Gnuplot output window and consequently the graphic too can be resized using the mouse.
- Measurements can be performed in 2d-plots with the mouse, 3d-plots can be rotated in any arbitrary direction.

Methods of Displaying the Graphics

Ploting into the wxMaxima Working Window

- When preceeding the letters wx to the names of the plotting routines (wxplot2d, wxplot3d, wxdraw2d, wxdraw3d,...), PNG-graphics are produced in screen resolution and placed directly into the wxMaxima working window.
- As the graphics remain visible during the entire Maxima session, that method is beneficial for interactive work.
- Right clicking the graphic enables copying into the clipboard or saving as a file.
- Nevertheless, due to its low resolution, further use of a graphic produced in that way is not reasonable.

Graphic Interface Plot plot2d (expr, xrange)

- expr is an expression to be plotted on the vertical axis as a function of one variable.
- xrange, the range of the horizontal axis, is a list of the form [variable, min, max], where variable is a variable which appears in expr.
- plot2d (expr, xrange) plots expr as a function of the variable named in xrange, over the range specified in xrange.
- Since the vertical range has not been specified, it will be chosen automatically.

Graphic Interface Plot plot2d (expr, xrange)⇒Examples

(i)
$$y = x^{2} + 4, -2 \le x \le 2$$

(ii) $y = \sin(2\theta), -\pi \le \theta \le \pi$
(iii) $y = 2\cos(2\theta), 0 \le \theta \le \pi$
(iv) $y = e^{x}, -2 \le x \le 2$
(v) $y = \ln x, -2 \le x \le 2$
(vi) $y = \cos(\theta) + \sin(4\theta), -\pi \le \theta \le \pi$

Graphic Interface Plot plot2d (expr, xrange, yrange)

- expr is an expression to be plotted on the vertical axis as a function of one variable.
- xrange, the range of the horizontal axis, is a list of the form [variable, min, max], where variable is a variable which appears in expr.
- yrange, the range of the vertical axis, is a list of the form [y, min, max].
- plot2d (expr, xrange,yrange) plots expr as a function of the variable named in xrange, over the range specified in xrange.
- The vertical range is set to **yrange**.

Graphic Interface Plot plot2d (expr, xrange,yrange)⇒Examples

(i)
$$y = x^2 + 4, -2 \le x \le 2, 0 \le y \le 10$$

(ii) $y = \cos(2\theta), -\pi \le \theta \le \pi, 0 \le y \le 1$
(iii) $y = 2e^x, -2 \le x \le 2, 0 \le y \le 5$
(iv) $y = \frac{1}{\ln(2x)}, -2 \le x \le 2, -1 \le y \le 1$

Graphic Interface Plot plot2d([expr_1, ..., expr_n], xrange)

- plot2d([expr_1, ..., expr_n], xrange) plots expr_1, ..., expr_ n as a function of the variable named in xrange, over the range specified in xrange.
- Since the vertical range has not been specified, it will be chosen automatically.

Graphic Interface Plot plot2d([expr_1, ..., expr_n], xrange)⇒Examples

(i)
$$y = \sin(x), y = \cos(x), 0 \le x \le 2\pi$$

(ii) $y = \sin(x), y = \sin(2x), 0 \le x \le 2\pi$
(iii) $y = 8\sin(x), y = 4\cos(x), 0 \le x \le 2\pi$
(iv) $y = 2x^2, y = \cos(x), -\pi \le x \le \pi$

Mathematical Computing

plot2d([expr_1, ..., expr_n], xrange,yrange) plots expr_1, ..., expr_ n as a function of the variable named in xrange, over the range specified in xrange.

• The vertical range is set to **yrange**.

Department of Mathematics University of Ruhuna

Graphic Interface Plot plot2d([expr_1, ..., expr_n], xrange,yrange)

Graphic Interface Plot plot2d([expr_1, ..., expr_n], xrange,yrange)⇒Examples

(i)
$$y = \sin(x), y = \cos(x), 0 \le x \le 2\pi, 0 \le y \le 1$$

(ii) $y = \sin(x), y = \sin(2x), 0 \le x \le 2\pi, 0 \le y \le 1$
(iii) $y = 8\sin(x), y = 4\cos(x), 0 \le x \le 2\pi, 0 \le y \le 8$
(iv) $y = 2x^2, y = \cos(x), -\pi \le x \le \pi, 0 \le y \le 5$

Graphic Interface Plot plot2d([discrete,xvalues,yvalues])

- Plots the points with declaration of x-values and y-values in two distinct lists xvalues and yvalues.
- The points are connected by line segments by default.
 Eg:

xvalues:[0,3,6,4,6,3,0,2,0]; \Rightarrow Declaration of x-values. yvalues:[0,2,0,3,6,4,6,3,0]; \Rightarrow Declaration of y-values. plot2d([discrete,xvalues,yvalues]);

Graphic Interface Plot plot2d([discrete,pairs])

- Plots the points given as pairs in a nested list [[x1,y1],[x2,y2],...].
- The points are connected by line segments by default.
 Eg:

plot2d([discrete,[[3,1],[5,3],[3,5],[1,3],[3,1]]]);

Graphic Interface Plot plot2d([parametric,x(t),y(t),trange],opts)

- In a parametric plot, you give both the x and y coordinates of each point as a function of a third parameter, say t.
- The command plots a parametric curve with the parameter t within the range trange.
- In order to achieve a smooth curve, the number of initial points has to be increased using the option **nticks**.

Eg:

wxplot2d([parametric,sin(t),sin(2*t),[t,0,2*%pi]],[nticks,100]);

Graphic Interface Plot plot2d([parametric,x(t),y(t),trange],opts)

Plot the following parametric curves.

(i)
$$x = 3\sin(t), y = 4\cos(t), 0 \le t \le 2\pi$$

(ii) $x = \sin(t), y = \sin(2t), 0 \le t \le 2\pi$
(iii) $x = 8\sin(t), y = 4t\cos(t), 0 \le t \le 2\pi$
(iv) $x = 2t^2, y = \cos(t), -\pi \le t \le \pi$

Graphic Interface Plot ^{3d Plot}

- The Graphic Interface Plot offers only very limited possibilities for creating 3d-plots.
- The use of the Graphic Interface Draw is recommended for the creation of 3d-graphics.
- The Graphic Interface Plot can produced two kinds of 3d-object.

Graphic Interface Plot 3d Plot⇒First Type⇒plot3d(f(x,y),xrange,yrange)

- > z = f(x, y); is the function that is to be ploted in 3d space.
- The ranges for x-values and y-values have to be declared as xrange and yrange respectively.
- ► However, the z-range cannot be declared.

Department of Mathematics University of Ruhuna

Graphic Interface Plot 3d Plot⇒First Type⇒plot3d(f(x,y),xrange,yrange)⇒Examples

(i)
$$f(x, y) = 1/(1 + x^2 + y^2), -3 \le x \le 3, -3 \le y \le 3$$

(ii) $f(x, y) = \sin(x^2 + y^2), -5 \le x \le 5, -5 \le y \le 5$
(iii) $f(x, y) = x + y + \sin(xy), -10 \le x \le 10, -10 \le y \le 10$
(iv) $f(x, y) = x^2 - 2y^2 + \cos(xy), -10 \le x \le 10, -10 \le y \le 10$

Graphic Interface Plot 3d Plot⇒Second Type⇒plot3d([x(u, v),y(u, v),z(u, v)],urange,vrange)

- ► 3d-plot of a surface in parametric form can be ploted.
- ► An object in parametric form x(u, v), y(u, v), z(u, v) in dependence of two parameters u and v has to be considered.
- ► The ranges of the parameters **u** and **v** have to be declared as **urange** and **vrange** respectively.
- The ranges of the coordinates **x**, **y** and **z** cannot be declared.

Graphic Interface Plot 3d Plot⇒Second Type⇒plot3d([x(u, v),y(u, v),z(u, v)],urange,vrange)⇒Examples

Obtain the surfaces of the following parametric equations.

(i)
$$x = \cos(u), y = v, z = v^2 + \sin(u), -3 \le u \le 3, -3 \le v \le 3$$

(ii) $x = t, y = u, z = \sin(tu), 0 \le t \le 3, 0 \le u \le 3$
(iii) $f = \cos(x), g = y, h = y^2 + \sin(x), 0 \le x \le 2\pi, 0 \le y \le 1$

Graphic Interface Plot Contour plot⇒contour_plot(f(x,y),xrange,yrange)

- A contour plot is a graphical technique for representing a 3-dimensional surface by plotting constant z slices, called contours, on a 2-dimensional format.
- That is, given a value for z, lines are drawn for connecting the (x, y) coordinates where that z value occurs.
- contour_plot draws contour lines of a function in two variables within the ranges xrange and yrange.

$\label{eq:Graphic Interface Plot} \begin{aligned} & \mathsf{Graphic Interface Plot} \\ & \mathsf{Contour plot} \Rightarrow \mathsf{contour_plot}(\mathsf{f}(\mathsf{x},\mathsf{y}),\mathsf{xrange},\mathsf{yrange}) \Rightarrow \mathsf{Examples} \end{aligned}$

Obtain the contour plot of the following parametric equations.

(i)
$$f(x, y) = 1/(1 + x^2 + y^2), -3 \le x \le 3, -3 \le y \le 3$$

(ii) $f(x, y) = \sin(x^2 + y^2), -5 \le x \le 5, -5 \le y \le 5$
(iii) $x = \cos(u), y = v, z = v^2 + \sin(u), -3 \le u \le 3, -3 \le v \le 3$
(iv) $x = t, y = u, z = \sin(tu), 0 \le t \le 3, 0 \le u \le 3$

Graphic Interface Plot Options

- Additional optional parameters allow adapting a graphic to particular requirements with respect to colors, line types, sizes, labels, output formats etc.
- The options are lists (mostly contains two elements).
- The first element is always the name of the option, additional elements are the associated values.

Graphic Interface Plot Options⇒Cont...

- Options can be stated as additional parameters in every plot command.
- They can also be declared as default values using the command set_plot_option as shown below.

 $set_plot_option([name, v]) \Rightarrow Assigns the option name to the value v.$

- In that case they are valid for all subsequent plot commands.
- The command plot_options shows all default values of the options.

Graphic Interface Plot Options⇒Commands

- $[xlabel, "text"] \Rightarrow x-axis label in 2d-plots.$
- $[ylabel, "text"] \Rightarrow y-axis label in 2d-plots.$
- $[\textbf{legend}, "\texttt{text1}", "\texttt{text2}", ...] \Rightarrow \text{ Legends for particular curves}$
 - in a 2d-Plot.
 - $[gnuplot_term, terminal] \Rightarrow Output format; ignored by the wx-routines$
- $[gnuplot_out_file, "filename"] \Rightarrow Output target; ignored by the wx-routines.$

Graphic Interface Plot Options⇒Commands⇒Example

Plot $y = x^2$ and $y = x^2 + 4$ in the range of $-2 \le x \le 2$, $0 \le y \le 10$.

- (i) Name x axis as **Independent variable**.
- (ii) Name y axis as **Dependent variable**.
- (iii) By using a legend name two curves as First and Second.
- (iv) Save the plot in gif format with the name Graph.

Graphic Interface Plot Options⇒Style command

- The option style assigns the type of the curve, line width and line color (and the point type, if desired).
- In pixel graphics the line width is given in pixels.
- In vector graphics as multiples of 0.25pt (about 0.088mm).

Graphic Interface Plot Options⇒Style command⇒Cont...

The curve type can obtain the following values:

- **lines** \Rightarrow solid line
- **points** \Rightarrow points
- **linespoints** \Rightarrow solid line and points
 - **impulses** \Rightarrow bars (line widths and colors are ignored)

Graphic Interface Plot Options⇒Style command⇒Cont...

Colors can have the following values:

- $1 \ \Rightarrow \ {\rm blue}$
- $\mathbf{2} \ \Rightarrow \ \mathrm{red}$
- $\mathbf{3} \ \Rightarrow \ \mathrm{magenta}$
- $\mathbf{4} \Rightarrow \text{yellow}$
- $5 \Rightarrow brown$
- $\mathbf{6} \Rightarrow \text{green}$
- $7 \Rightarrow cyan$

Graphic Interface Plot Options⇒Style command⇒Example

Plot following data in a scater plot.

Xi	Уi
23.1	10.5
32.8	16.7
31.8	18.2
32.0	17.0
30.4	16.3
24.0	10.5
39.5	23.1
24.2	12.4
52.5	24.9
37.9	22.8

Thank You

Department of Mathematics University of Ruhuna Mathematical Computing