Mathematical Computing IMT2b2β

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Department of Mathematics University of Ruhuna Mathematical Computing

Differential Equations

Department of Mathematics University of Ruhuna Mathematical Computing

Differential equations can basically be classified as

- ordinary differential equation and
- partial differential equation.

► A differential equation that contains only one independent variable is considered an **ordinary differential equation**.

• Eg:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + 2$$
 $y' = x^2 - 1$ $\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{\mathrm{d}u}{\mathrm{d}x} = x + 1$

- These types of differential equations can be either linear or nonlinear.
- An ordinary differential equation is **linear** if it is written in the following general form:

$$a_n(x)\frac{\mathrm{d}^n y}{\mathrm{d}x^n} + a_{n-1}(x)\frac{\mathrm{d}^{n-1}y}{\mathrm{d}x^{n-1}} + \dots + a_1(x)y + a_0(x) = f(x).$$

 A differential equation that contains only two or more independent variables is considered a partial differential equation.

► Eg:
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 1$$
 $\frac{\partial R}{\partial u} = 3w^2 \frac{\partial R}{\partial w} - 5v \frac{\partial R}{\partial v}.$

The order of any differential equation is the highest order of the derivative present in the equation.

•
$$\frac{d^2 u}{dx^2} + \frac{du}{dx} = x + 1 \Rightarrow \text{ODE of oder } 2.$$

• $y''' + 3xy'' + \frac{6}{x}y = 1 - x^3 \Rightarrow \text{ODE of oder } 3.$
• $x^2 \frac{dy}{dx} + 3yx = \frac{\sin x}{x} \Rightarrow \text{ODE of oder } 1.$
• $\frac{\partial R}{\partial u} = 3w^2 \frac{\partial R}{\partial w} - 5v \frac{\partial R}{\partial v} \Rightarrow \text{PDE of oder } 1.$

- An ordinary differential equation is an equation where the unknown is not a number but a function.
- ► First-order ODEs contain first derivatives and can be written as y' = f(x, y).
- ► Second-order ODEs contain first and second derivatives and can be written as y" = f(x, y, y').

There are two ways to represent ordinary differential equations in Maxima.

► The first way is to represent the derivatives by: 'diff(y,x,1) ⇒ $\frac{dy}{dx}$ 'diff(y,x,2) ⇒ $\frac{d^2y}{dx^2}$

► The second way is to write y(x) explicitly as a function of x: diff(y(x),x,1) $\Rightarrow \frac{dy}{dx}$ diff(y(x),x,2) $\Rightarrow \frac{d^2y}{dx^2}$ ▶ Routine **ode2** can be used to solve first-order ODEs.

•
$$\mathbf{y}' = \mathbf{f}(\mathbf{x}, \mathbf{y}) \Rightarrow \mathbf{ode2(eqn,y,x)}.$$

- It takes three arguments: an ODE given by eqn, the dependent variable y, and the independent variable x.
- The function tries various integration methods to find an analytic solution.

- When successful, it returns either an explicit or implicit solution for the dependent variable.
- ▶ %c is used to represent the integration constant of first-order equations.
- If routine ode2 cannot obtain a solution for whatever reason, it returns false.
- Routine ode2 stores information about the method used to solve the differential equations in variable method.

Ordinary Differential Equations Solving First-Oder ODEs Using Maxima Examples

(i)
$$\frac{dy}{dx} = x + 2$$

(iv) $\frac{dy}{dt} = y(k - y)$
(ii) $y' = x^2 - 1$
(v) $\frac{dy}{dx} + 11xy = x^3y^3$
(iii) $x^2\frac{dy}{dx} + 3yx = \frac{\sin x}{x}$
(v) $\frac{dy}{dt} = y$

 Routine ode2 can also be used to solve second-order differential equations.

•
$$\mathbf{y}'' = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{y}') \Rightarrow \mathbf{ode2(eqn, y, x)}.$$

- It takes three arguments: an ODE given by eqn, the dependent variable y, and the independent variable x.
- When successful, it returns either an explicit or implicit solution for the dependent variable.
- In this case the two integration constants are represented by %k1 and %k2.

Ordinary Differential Equations Solving Second-Oder ODEs Using Maxima Examples

(i)
$$y'' + y' - 6y = 0$$

(ii) $3\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$
(iii) $4y'' + 12y' + 9y = 0$
(iv) $y'' - 6y' + 13y = 0$

An initial-value problem for the first-order consists of finding a solution y of the differential equation that also satisfies initial condition of the form:

$$y(x_0)=y_0.$$

▶ Where *y*⁰ is given constant.

 Initial value problems of first order can be solved by routine ic1.

$$\begin{array}{lll} \textbf{y}'=f(\textbf{x},\textbf{y}) &\Rightarrow & \textbf{sol}: \textbf{ode2}(\textbf{eqn},\textbf{y},\textbf{x}) \\ \textbf{sol}, \textbf{y}(\textbf{x}_0)=\textbf{y}_0 &\Rightarrow & \textbf{ic1}(\textbf{sol},\textbf{x}=\textbf{x}_0,\textbf{y}=\textbf{y}_0) \end{array}$$

- It takes a general solution to the equation as found by ode2 as its first argument.
- The second argument x₀ gives an initial value for the independent in the form x = x₀ and the third argument y₀ gives the initial value for the dependent variable in the form y = y₀.

Initial Value Problems of First-Order

Solving initial value problems of first-oder ODEs using Maxima⇒Example

Find the solution of the initial value problem:

$$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 3yx = \frac{\sin x}{x}, \quad y(\pi) = 0.$$

An initial-value problem for the second-order consists of finding a solution y of the differential equation that also satisfies initial conditions of the form:

$$y(x_0) = y_0$$
 $y'(x_0) = y_1$.

• Where y_0 and y_1 are given constants.

Initial value problems of second order can be solved by routine ic2.

$$\begin{array}{rl} \textbf{y}''=f(\textbf{x},\textbf{y},\textbf{y}') &\Rightarrow \quad \textbf{sol}: ode2(eqn,\textbf{y},\textbf{x})\\ & \textbf{sol}\\ \textbf{y}(\textbf{x}_0)=\textbf{y}_0 &\Rightarrow \quad \textbf{ic2}(\textbf{sol},\textbf{x}=\textbf{x}_0,\textbf{y}=\textbf{y}_0,'\, \textbf{diff}(\textbf{y},\textbf{x})=\textbf{y}_1)\\ \textbf{y}'(\textbf{x}_0)=\textbf{y}_1 \end{array}$$

ic2 has an additional forth argument y₁ that gives the initial value of the first derivative of the dependent variable with respect to the independent variable in the form 'diff(y,x) = y₁.

Initial Value Problems of Second-Order

Solving Initial Value Problems of Second-Oder ODEs Using Maxima⇒Examples

(i) Solve the initial-value problem:

$$y'' + y(y')^3 = 0$$
 $y(0) = 0$ $y'(0) = 2.$

(ii) Solve the initial-value problem:

$$y'' + y' - 6y = 0$$
 $y(0) = 1$ $y'(0) = 0.$

```
\label{eq:constraint} \begin{split} &desolve(eqn, y) \\ &desolve([eqn\_1, ..., eqn\_n], [y\_1, ..., y\_n]) \end{split}
```

- The function desolve, solves systems of linear ordinary differential equations using Laplace transform.
- ► Here the eqn's are differential equations in the dependent variables y_1, ..., y_n.
- ► The functional dependence of **y**_**1**, ..., **y**_**n** on an independent variable, for instance **x**, must be explicitly indicated in the variables and its derivatives.

Solve the following system of linear ODEs.

$$x'(t) = x(t) - 2y(t)$$

$$y'(t) = -x(t) + y(t)$$

 Following would not be the correct way to define two equations:

$$eqn1$$
 : 'diff(x, t) = x - 2 * y;
 $eqn2$: 'diff(y, t) = -x + y;

The correct way would be:

$$eqn1$$
 : $diff(x(t), t) = x(t) - 2 * y(t);$
 $eqn2$: $diff(y(t), t) = -x(t) + y(t);$

The call to the function desolve would then be:

- If initial conditions are known, they can be supplied by using atvalue.
- Notice that the conditions must be given before the equations are solved.

Solve following systems of linear ODEs with given initial conditions.

$$x'(t) = x(t) - 2y(t)$$
 $x(0) = 1$
 $y'(t) = -x(t) + y(t)$ $y(0) = 1$

Thank You