Mathematical Computing IMT2b2 β

Department of Mathematics
University of Ruhuna

A.W.L. Pubudu Thilan

Differential Equations

Types of Differential Equations

Differential equations can basically be classified as

- ordinary differential equation and
- partial differential equation.

Types of Differential Equations

Ordinary Differential Equations (ODEs)

- A differential equation that contains only one independent variable is considered an ordinary differential equation.
- Eg: $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=x+2 \quad y^{\prime}=x^{2}-1 \quad \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} u}{\mathrm{~d} x}=x+1$
- These types of differential equations can be either linear or nonlinear.
- An ordinary differential equation is linear if it is written in the following general form:

$$
a_{n}(x) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}+a_{n-1}(x) \frac{\mathrm{d}^{n-1} y}{\mathrm{~d} x^{n-1}}+\ldots+a_{1}(x) y+a_{0}(x)=f(x)
$$

Types of Differential Equations

Partial Differential Equations (PDEs)

- A differential equation that contains only two or more independent variables is considered a partial differential equation.
- Eg: $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=1 \quad \frac{\partial R}{\partial u}=3 w^{2} \frac{\partial R}{\partial w}-5 v \frac{\partial R}{\partial v}$.

Types of Differential Equations

Order of a Differential Equation

The order of any differential equation is the highest order of the derivative present in the equation.
$-\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} u}{\mathrm{~d} x}=x+1 \Rightarrow$ ODE of oder 2 .

- $y^{\prime \prime \prime}+3 x y^{\prime \prime}+\frac{6}{x} y=1-x^{3} \Rightarrow$ ODE of oder 3 .
- $x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y x=\frac{\sin x}{x} \Rightarrow$ ODE of oder 1 .
- $\frac{\partial R}{\partial u}=3 w^{2} \frac{\partial R}{\partial w}-5 v \frac{\partial R}{\partial v} \Rightarrow$ PDE of oder 1 .

Ordinary Differential Equations

- An ordinary differential equation is an equation where the unknown is not a number but a function.
- First-order ODEs contain first derivatives and can be written as $y^{\prime}=f(x, y)$.
- Second-order ODEs contain first and second derivatives and can be written as $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$.

Ordinary Differential Equations

Represent ODEs in Maxima

There are two ways to represent ordinary differential equations in Maxima.

- The first way is to represent the derivatives by:

$$
\text { 'diff }(\mathbf{y}, \mathbf{x}, \mathbf{1}) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x} \quad \text { 'diff }(\mathbf{y}, \mathrm{x}, \mathbf{2}) \Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}
$$

- The second way is to write $y(x)$ explicitly as a function of x : $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}, \mathbf{1}) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x} \quad \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}, 2) \Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$

Ordinary Differential Equations

- Routine ode2 can be used to solve first-order ODEs.
- $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{x}, \mathrm{y}) \Rightarrow$ ode2(eqn, $\left.\mathrm{y}, \mathrm{x}\right)$.
- It takes three arguments: an ODE given by eqn, the dependent variable \mathbf{y}, and the independent variable \mathbf{x}.
- The function tries various integration methods to find an analytic solution.

Ordinary Differential Equations

- When successful, it returns either an explicit or implicit solution for the dependent variable.
- \%c is used to represent the integration constant of first-order equations.
- If routine ode 2 cannot obtain a solution for whatever reason, it returns false.
- Routine ode2 stores information about the method used to solve the differential equations in variable method.

Ordinary Differential Equations

Solving First-Oder ODEs Using Maxima \Rightarrow Examples

$$
\begin{array}{ll}
\text { (i) } \frac{\mathrm{d} y}{\mathrm{~d} x}=x+2 & \text { (iv) } \frac{\mathrm{d} y}{\mathrm{~d} t}=y(k-y) \\
\text { (ii) } y^{\prime}=x^{2}-1 & \text { (v) } \frac{\mathrm{d} y}{\mathrm{~d} x}+11 x y=x^{3} y^{3} \\
\text { (iii) } x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y x=\frac{\sin x}{x} & \text { (vi) } \frac{\mathrm{d} y}{\mathrm{~d} t}=y
\end{array}
$$

Ordinary Differential Equations

- Routine ode2 can also be used to solve second-order differential equations.
- $\mathbf{y}^{\prime \prime}=\mathbf{f}\left(\mathbf{x}, \mathbf{y}, \mathbf{y}^{\prime}\right) \Rightarrow$ ode2(eqn, $\left.\mathbf{y}, \mathrm{x}\right)$.
- It takes three arguments: an ODE given by eqn, the dependent variable \mathbf{y}, and the independent variable \mathbf{x}.
- When successful, it returns either an explicit or implicit solution for the dependent variable.
- In this case the two integration constants are represented by \%k1 and \%k2.

Ordinary Differential Equations

Solving Second-Oder ODEs Using Maxima \Rightarrow Examples

(i) $y^{\prime \prime}+y^{\prime}-6 y=0$
(ii) $3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-y=0$
(iii) $4 y^{\prime \prime}+12 y^{\prime}+9 y=0$
(iv) $y^{\prime \prime}-6 y^{\prime}+13 y=0$

Initial Value Problems of First-Order

- An initial-value problem for the first-order consists of finding a solution y of the differential equation that also satisfies initial condition of the form:

$$
y\left(x_{0}\right)=y_{0}
$$

- Where y_{0} is given constant.

Initial Value Problems of First-Order

Solving Initial Value Problems of First-Oder ODEs Using Maxima

- Initial value problems of first order can be solved by routine ic1.

$$
\begin{aligned}
& \mathbf{y}^{\prime}=\mathbf{f}(\mathbf{x}, \mathbf{y})\Rightarrow \text { sol : ode2(eqn, } \mathbf{y}, \mathbf{x}) \\
& \text { sol, } \mathbf{y}\left(\mathrm{x}_{0}\right)=\mathbf{y}_{0} \quad \Rightarrow \quad \operatorname{ic1}\left(\text { sol }, \mathbf{x}=\mathrm{x}_{0}, \mathbf{y}=\mathbf{y}_{0}\right)
\end{aligned}
$$

- It takes a general solution to the equation as found by ode2 as its first argument.
- The second argument \mathbf{x}_{0} gives an initial value for the independent in the form $\mathbf{x}=\mathbf{x}_{\mathbf{0}}$ and the third argument $\mathbf{y}_{\mathbf{0}}$ gives the initial value for the dependent variable in the form $\mathbf{y}=\mathbf{y}_{\mathbf{0}}$.

Initial Value Problems of First-Order

Solving initial value problems of first-oder ODEs using Maxima \Rightarrow Example

Find the solution of the initial value problem:

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y x=\frac{\sin x}{x}, \quad y(\pi)=0
$$

Initial Value Problems of Second-Order

- An initial-value problem for the second-order consists of finding a solution y of the differential equation that also satisfies initial conditions of the form:

$$
y\left(x_{0}\right)=y_{0} \quad y^{\prime}\left(x_{0}\right)=y_{1} .
$$

- Where y_{0} and y_{1} are given constants.

Initial Value Problems of Second-Order

- Initial value problems of second order can be solved by routine ic2.

$$
\begin{aligned}
& \mathbf{y}^{\prime \prime}=\mathbf{f}\left(\mathbf{x}, \mathbf{y}, \mathbf{y}^{\prime}\right)\Rightarrow \text { sol : ode2(eqn, } \mathbf{y}, \mathrm{x}) \\
& \text { sol } \\
& \mathbf{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0} \Rightarrow \text { ic2 }\left(\text { sol }, x=x_{0}, y=y_{0},,^{\prime} \operatorname{diff}(y, x)=y_{1}\right) \\
& \mathbf{y}^{\prime}\left(x_{0}\right)=y_{1}
\end{aligned}
$$

- ic2 has an additional forth argument $\mathbf{y}_{\mathbf{1}}$ that gives the initial value of the first derivative of the dependent variable with respect to the independent variable in the form ${ }^{\prime} \operatorname{diff}(\mathbf{y}, \mathbf{x})=\mathbf{y}_{\mathbf{1}}$.

Initial Value Problems of Second-Order

Solving Initial Value Problems of Second-Oder ODEs Using Maxima \Rightarrow Examples
(i) Solve the initial-value problem:

$$
y^{\prime \prime}+y\left(y^{\prime}\right)^{3}=0 \quad y(0)=0 \quad y^{\prime}(0)=2
$$

(ii) Solve the initial-value problem:

$$
y^{\prime \prime}+y^{\prime}-6 y=0 \quad y(0)=1 \quad y^{\prime}(0)=0
$$

Linear System of ODEs

desolve (eqn, y) desolve([eqn_1, ,., eqn_n], [y_1,.., y_n])

- The function desolve, solves systems of linear ordinary differential equations using Laplace transform.
- Here the eqn's are differential equations in the dependent variables y_1, ..., y_n.
- The functional dependence of $\mathbf{y} _\mathbf{1}, \ldots, \mathbf{y} _\mathbf{n}$ on an independent variable, for instance \mathbf{x}, must be explicitly indicated in the variables and its derivatives.

Linear System of ODEs

Example

Solve the following system of linear ODEs.

$$
\begin{array}{r}
x^{\prime}(t)=x(t)-2 y(t) \\
y^{\prime}(t)=-x(t)+y(t)
\end{array}
$$

Linear System of ODEs

Example \Rightarrow Correct Syntax for desolve

- Following would not be the correct way to define two equations:

$$
\begin{aligned}
& \text { eqn1 : } \quad{ }^{\prime} \operatorname{diff}(x, t)=x-2 * y ; \\
& \text { eqn2 }: \quad{ }^{\prime} \operatorname{diff}(y, t)=-x+y ;
\end{aligned}
$$

- The correct way would be:

$$
\begin{aligned}
& \text { eqn1 }: \operatorname{diff}(x(t), t)=x(t)-2 * y(t) ; \\
& \text { eqn2 }: \operatorname{diff}(y(t), t)=-x(t)+y(t) ;
\end{aligned}
$$

- The call to the function desolve would then be:

$$
\text { desolve }([\text { eqn1, eqn2], }[x(t), y(t)])
$$

Linear System of ODEs with Initial Conditions

- If initial conditions are known, they can be supplied by using atvalue.
- Notice that the conditions must be given before the equations are solved.

Linear System of ODEs with Initial Conditions

 ExampleSolve following systems of linear ODEs with given initial conditions.

$$
\begin{aligned}
x^{\prime}(t)=x(t)-2 y(t) & x(0)=1 \\
y^{\prime}(t)=-x(t)+y(t) & y(0)=1
\end{aligned}
$$

Thank You

