Mathematical Computing IMT2b2 β

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Differentiation

First derivative

- Maxima can compute derivatives of a given function.
- It provides a single command diff for this purpose.
- The command diff(expr,x), differentiates the expression expr with respect to variable \mathbf{x}.

First derivative

Examples

Find first derivative of the following functions.
(i) $y=3 x^{6}+5 x^{4}$.
(ii) $y=-\frac{1}{4} x^{6}+3 x$.
(iii) $y=2 x^{-6}+5 x^{5}$.

$$
\begin{aligned}
& \text { (iv) } y=\frac{4}{x^{5}}+\frac{2}{3} . \\
& \text { (v) } y=-\frac{18}{x^{5}}-2 x^{5} . \\
& \text { (vi) } y=e^{x^{2}+2 x+5} .
\end{aligned}
$$

Derivatives of higher order

- Maxima can compute derivatives of higher order for a given function.
- To compute higher derivatives we have to use command diff with additional argument.
- diff(expr, \mathbf{x}, \mathbf{n}) gives \mathbf{n}-th derivative of expr with respect to \mathbf{x}.

Derivatives of higher order

Examples

Find second and third derivatives of the following functions.
(i) $y=x^{3}$.
(ii) $y=\frac{\left(x^{3}-2\right)}{2 x^{2}}$.
(iii) $y=\frac{x^{3}+5 x-4}{x^{2}-2}$.

$$
\begin{aligned}
& \text { (iv) } y=\frac{\sin t+t}{\cos t} \\
& \text { (v) } v=\frac{e^{x}}{\cos x} \\
& \text { (vi) } y=\frac{\left(x^{2}+5 x+6\right)}{e^{2 x}-\sin x} .
\end{aligned}
$$

Partial derivatives

- A partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant.
- Maxima can also compute partial derivatives.
- The command $\operatorname{diff}(\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}, \mathbf{1})$ gives the partial derivative of $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ with respect to \mathbf{x}.
- Similarly, the command $\operatorname{diff}(\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{y}, \mathbf{1})$ gives the partial derivative of $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ with respect to \mathbf{y}.
- In here 1 indicates first partial derivative.

Partial derivatives

Examples

Use Maxima to find the first order partial derivatives with respect to x and y of the following functions.
(i) $f(x, y)=x^{3} y+y^{3} x$.
(iii) $h(x, y)=\ln \left(x^{2}+y^{4}+1\right)$.
(ii) $g(x, y)=\sin \left(x+y^{2}\right)$.
(iv) $f(x, y)=x e^{x y^{2}}$.

Higher order partial derivatives

- To calculate the second-order partial derivative of $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ with respect to \mathbf{x} and \mathbf{y}, we use $\operatorname{diff}(\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}, \mathbf{1}, \mathbf{y}, \mathbf{1})$.
- To calculate the third-order partial derivative of $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ with respect to $\mathbf{x}, \mathbf{x}, \mathbf{z}$ we use $\operatorname{diff}(\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}, \mathbf{2}, \mathbf{z}, \mathbf{1})$ and so on.

Higher order partial derivatives

(i) Find the second order partial derivative of $x e^{x y^{2}}$ with respect to x and y.
(ii) Find the third order partial derivative of $\ln \left(x+y^{3}+z^{5}\right)$ with respect to x, y and z.

The total differential

- When we call diff with only one argument (i.e., without passing any variable names), then Maxima computes the total differential of the given expression.
- The differentials of the variables are represented by symbol del.
- We can replace $\mathbf{d e l}(\mathbf{x})$ and $\operatorname{del}(\mathbf{y})$ by $\mathbf{d x}$ and $\mathbf{d y}$.

The total differential

Examples

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{diff}\left(x^{\wedge} 2 * y+y^{\wedge} 2 * x\right) \\
& \Rightarrow \quad\left(2 * x * y+x^{\wedge} 2\right) * \operatorname{del}(y)+\left(y^{\wedge} 2+2 * x * y\right) * \operatorname{del}(x) \\
& \Rightarrow \quad \%, \operatorname{del}(x)=d x, \operatorname{del}(y)=d y \\
& \Rightarrow \quad\left(2 * x * y+x^{\wedge} 2\right) * d y+\left(y^{\wedge} 2+2 * x * y\right) * d x
\end{aligned}
$$

The gradient

- The gradient of a single-valued function can be computed as Jacobian.
- Notice that the function must be given as a list with one element.
- The command jacobian(\mathbf{f}, \mathbf{x}) gives the gradient of single-valued function \mathbf{f} with respect to vector \mathbf{x}.

The gradient

Examples

Find the gradient of following functions.
(i) $f(x, y)=x^{2}-2 x y+6 x-2 y+1$.
(ii) $g(x, y)=e^{x y}$.

Jacobian matrix

- The Jacobian matrix is the matrix of all first-order partial derivatives of a vector- or scalar-valued function with respect to another vector.
- The command jacobian(\mathbf{f}, \mathbf{x}) gives the Jacobian matrix of vector-valued function \mathbf{f} with respect to vector \mathbf{x}.
- In Maxima Vector-values functions are represented by vectors of (single-values) functions.
- The derivative of such functions is called the Jacobian matrix.

Jacobian matrix

Examples

Find the Jacobian matrix of following functions.
(i) $f(x, y)=\left(x^{2}-2 x y+6 x-2 y+1, x^{3} y+y^{2} x^{3}\right)$.
(ii) $g(x, y)=\left(e^{x y}, \sin (x y)\right)$.

Thank You

