Mathematical Computing IMT2b2 β

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Solving Equations

Introduction

- Maxima has several functions which can be used for solving sets of algebraic equations and for finding the roots of an expression.
- Maxima's ability to solve equations is limited, but progress is being made in this area.

The function solve()

- The function solve can be used to solves a system of simultaneous linear or nonlinear polynomial equations for the specified variable(s) and returns a list of the solutions.
- The Maxima manual has an extensive entry for the important function solve.

The function solve()

 Syntax to solve one equation- The Maxima syntax to solve one equation is:
solve(expr, x) solve(expr)
- It solves the algebraic equation expr for the variable \mathbf{x} and returns a list of solution equations in \mathbf{x}.
- If expr is not an equation expr=0 is assumed in its place.
- x may be omitted if expr contains only one variable.

The function solve()

 Syntax to solve one equation \Rightarrow Different ways to give arguments- It is important to recognise that the first argument to solve is either an equation such as $\mathbf{f}(\mathbf{x})=\mathbf{g}(\mathbf{x})($ or $\mathbf{h}(\mathbf{x})=\mathbf{0})$, or simply $\mathbf{h (x)}$.
- If you just give $\mathbf{h}(\mathbf{x})$, the command solve understands that you mean the equation $\mathbf{h (x)}=\mathbf{0}$, and the problem is to find the roots of $\mathbf{h}(\mathbf{x})$.
- The roots of $\mathbf{h}(\mathbf{x})$ means, values of \mathbf{x} such that the equation $\mathbf{h}(\mathbf{x})=\mathbf{0}$ is satisfied.

The function solve()

Syntax to solve one equation \Rightarrow Different ways to give arguments \Rightarrow Try followings

1. (i) solve $\left(x^{\wedge} 2+3 * x-1=0, x\right)$;
(ii) solve $\left(x^{\wedge} 2+3 * x-1=0\right)$;
(iii) solve $\left(x^{\wedge} 2+3 * x-1, x\right)$;
(iv) solve $\left(x^{\wedge} 2+3 * x-1\right)$;
2. (i) solve $(2 * x-4=0, x)$;
(ii) solve $(2 * x-4=0)$;
(iii) solve $(2 * x-4, x)$;
(iv) solve $(2 * x-4)$;

The function solve()

Syntax to solve one equation \Rightarrow Different ways to give arguments \Rightarrow Exercise
(i) $x-6=8$
(ii) $2 x-4=-15$
(iii) $\sqrt{x-10}-4=0$
(iv) $x^{2}+5 x+3=0$
(v) $t^{2}-t+6=0$
(vi) $\frac{1}{(x-3)}+\frac{1}{(x+3)}=\frac{10}{\left(x^{2}-9\right)}$

The function solve()
 Further computations on solutions

- We can assign equations to variables.
- The solutions can be reverted into "non-equations" or used in further computations by means of command $\mathbf{e v}$.
- An alternative way is to use command rhs to extract the expression from the right-hand side of the equation.

The function solve()

Further computations on solutions \Rightarrow Try followings

1. (i) \Rightarrow sol : solve $\left(x^{\wedge} 2+3 * x-1, x\right)$;
(ii) $\Rightarrow e v(x, \operatorname{sol}[1])$;
(iii) $\Rightarrow \operatorname{rhs}($ sol[2] $)$;
2. (i) \Rightarrow eq : solve $\left(2 * x^{\wedge} 2-5 * x+1=0, x\right)$;
(ii) $\Rightarrow e v(x, e q[2])$;
(iii) $\Rightarrow \operatorname{rhs}(e q[1])$;

The function solve() Systems of two or more expressions

- Systems of two or more expressions as well as their variables must be encapsulated in lists.
- Each solution is then also returned as list.

The function solve()

1. (i) $\Rightarrow e q 1: 3 * x^{\wedge} 2-y^{\wedge} 2=2$;
(ii) $\Rightarrow e q 2: x^{\wedge} 2+y^{\wedge} 2=2$;
(iii) \Rightarrow solve([eq1, eq2], $[x, y])$;
2. (i) $\Rightarrow\left[4 * x^{\wedge} 2-y^{\wedge} 2=12, x * y-x=2\right]$;
(ii) $\Rightarrow \operatorname{solve}(\%,[x, y])$;

The function solve()

Systems of two or more expressions \Rightarrow Exercise

1. Solve the following systems of equations:

$$
\begin{aligned}
2 x_{1}+3 x_{2}+4 x_{3} & =2 \\
4 x_{1}+3 x_{2}+x_{3} & =10 \\
x_{1}+2 x_{2}+4 x_{3} & =5
\end{aligned}
$$

The function allroots(expr)

- In general there are no closed form solutions for the roots of polynomials of degree 5 or larger.
- The allroots computes numerical approximations of the real and complex roots of the polynomial equation of one variable.

The function allroots(expr)

Try followings

$$
\begin{aligned}
& \text { 1. } \Rightarrow \text { solve }\left(x^{\wedge} 5-x^{\wedge} 4+2 * x^{\wedge} 3+x^{\wedge} 2-x+5, x\right) ; \\
& \text { 2. } \Rightarrow \operatorname{allroots}\left(x^{\wedge} 5-x^{\wedge} 4+2 * x^{\wedge} 3+x^{\wedge} 2-x+5\right) ;
\end{aligned}
$$

Thank You

