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Chapter 2

Handling Algebraic Expressions
and doing Symbolic

Computations
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Symbolic vs numeric computation

Results of symbolic computation are exact.

Numeric computation computes with numeric approximations.

That means results are not exact.
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The sum and product calculations
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Summation calculations

The function sum is used for summation calculations.

sum(expr, i, i 0, i 1) represents a summation of the values of
expr as the index i varies from i 0 to i 1.

sum evaluates its summand expr and lower and upper limits
i 0 and i 1.

sum does not evaluate the index i.

The simpsum option simplifies the sum whenever possible.
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Summation calculations
Examples

(i) sum(i , i , 1, 100);

(ii) sum(i2, i , 1, 100);

(iii) sum(a[i ], i , 1, 10);

(iv) sum(a(i), i , 1, 10);

(v) sum(a(i), i , 1, n);

(vi) sum(1/k, k, 1, n);

(vii) sum(k, k, 1, n);

(viii) Simplyfy above.

(ix) sum(1/k, k, 1, inf );

(x) Is it possible to simply
above?

(xi) sum(1/4k , k , 1, inf );

(xii) Simplyfy above.

(xiii) sum(3k + k2 + k, k, 0, n);

(xiv) Simplyfy above.
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Product calculations

The function product is used for product calculations.

product(expr, i, i 0, i 1) represents a product of the values of
expr as the index i varies from i 0 to i 1.

product evaluates expr and lower and upper limits i 0 and
i 1.

product does not evaluate the index i.

The simpproduct option simplifies the product whenever
possible.
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Product calculations
Examples

(i) product(x + i , i , 1, 5);

(ii) product(x + k ∗ (k +
1)/2, k, 1, 5);

(iii) product(k3, k, 1, 10);

(iv) product(a[k], k, 1, 10);

(v) product(t(k), k, 0, 10);

(vi) product(t(k), k, 1, n);

(vii) product(t(k), k, 1, inf );

(viii) product(k, k, 1, n);
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The sets
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Construct sets

To construct the empty set, write set(); or {};.

We can use set(...); or { ... }; to make non empty set.

To construct a set with members t 1, ..., t n, write
set(t 1, ..., t n); or {t 1, ..., t n};.

Sets are always displayed with curly braces.

If a member is listed more than once, simplification eliminates
the redundant member.
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Construct sets
Examples

(i) set();

(ii) set(a, b, c , d);

(iii) set(l , t, l);

(iv) set(a, b, c , set(d));

(v) set(a, b, c , set(b));

(vi) set(a, c, d , e, [b, c, e]);

(vii) {};
(viii) {a, b, c , d};
(ix) {k, [l ]};
(x) {l , t, l};
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Functions for sets
adjoin (x, s);

Returns the union of the set s with {x}.

adjoin complains if s is not a literal set.

adjoin(x, s); and union(set(x), s); are equivalent.

However, adjoin may be somewhat faster than union.
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Functions for sets
adjoin (x, s);⇒ Examples

(i) adjoin(c, {a, b, d , e});
(ii) adjoin(c, {c, b, d , e});
(iii) union(set(c), {a, b, d , e});
(iv) union(set(c), {c , b, d , e});
(v) union(set(1), {2, 3, 56, 1});
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Functions for sets
cardinality (s);

Returns the number of distinct elements of the set s.

cardinality ignores redundant elements.
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Functions for sets
cardinality (s)⇒Examples

(i) cardinality({});
(ii) cardinality({a, b, c});
(iii) cardinality({a, a, b, c});
(iv) cardinality(set(a, b, c , d));
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Functions for sets
disjoin (x, s);

Returns the set s without the member x.

If x is not a member of s, return s unchanged.

disjoin complains if s is not a literal set.

disjoin(x, s);, delete(x, s);, and setdifference(s, set(x));
are all equivalent.

Of these, disjoin(); is generally faster than the others.

Department of Mathematics University of Ruhuna, Mathematical Computing, IMT2b2β 16/64



Functions for sets
disjoin (x, s);⇒ Examples

(i) disjoin(2, {4, 5, 2, 9});
(ii) disjoin(a, {e, c , a, b});
(iii) disjoin(e + f , {4, e + f ,%pi , 45});
(iv) disjoin(1, {4, 5, 2, 9});
(v) disjoin(e, {4, e + f ,%pi , 45});
(vi) delete(2, {4, 5, 2, 9});
(vii) setdifference({4, 5, 2, 9}, set(2));

Department of Mathematics University of Ruhuna, Mathematical Computing, IMT2b2β 17/64



Functions for sets
intersect(s 1, ..., s n);

Returns a set containing the elements that are common to the
sets s 1 through s n.

intersection(); is the same as intersect();.

intersect(); complains if any argument is not a literal set.
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Functions for sets
intersect(s 1, ..., s n); ⇒ Examples

Define following sets.
S 1 : {a, b, c , d};
S 2 : {d , e, f , g};
S 3 : {c , d , e, f };
S 4 : {u, v ,w};

(i) Find common elements of S 1 and S 2.

(ii) Find common elements of S 2 and S 3.

(iii) Find common elements of S 1, S 2 and S 3.

(iv) Find common elements of S 1, S 2, S 3 and S 4.

Department of Mathematics University of Ruhuna, Mathematical Computing, IMT2b2β 19/64



Functions for sets
union(s 1, ..., s n);

Returns the union of the sets s 1 through s n.

union(); complains if any argument is not a literal set.
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Functions for sets
union(s 1, ..., s n); ⇒ Examples

Define following sets.
S 1 : {a, b, c , d};
S 2 : {d , e, f , g};
S 3 : {c , d , e, f };
S 4 : {u, v ,w};

(i) Find the union of S 1 and S 2.

(ii) Find the union of S 2 and S 3.

(iii) Find the union of S 1, S 2 and S 3.

(iv) Find the union of S 1, S 2, S 3 and S 4.
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Functions for sets
Some other function on sets

disjointp (s, t);

Returns true if and only if the sets s and t are disjoint.

elementp (a, s);

Returns true if and only if a is a member of the set s.

emptyp (s);

Return true if and only if s is the empty set or the empty list.

powerset(s);

Returns the set of all subsets of the set s .
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The Lists
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What is a list?

Lists are used to combine several items into a single object.

They are displayed by enclosing its elements between square
brackets.

A list may even contain other lists as its entries.

It may also consists of one or zero elements.
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What is a list?
Examples

(i) [ ];

(ii) [a, b, c , d , e];

(iii) [2, 3, 5, 6, 7, 23];

(iv) [2, 3, 1, 8, [3, 5]];

(v) l : [−3, 45, 57, 19];

(vi) emtyList : [ ];
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Accessing lists elements

An element of a list can be accessed by its index enclosed in
square brackets.

The first element has index 1.

The largest index must not exceed the length of the list.

length(L); returns the length of list L.
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Accessing lists elements
More commands on lists elements access

Command Description
first(L); First element of list L
second(L); Second element of a list L
rest(L,n); Returns L with its first n elements removed

last(L); Last element of list L
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Accessing lists elements
Examples

(i) Define a list with elements 2,5,7,9,3,6,23,11,14,[-22,45,19].

(ii) Assign the list to a variable L.

(iii) Find the lenght of L.

(iv) Access 3rd element of the list.

(v) Access first element of the list.

(vi) Access last element of the list.

(vii) Try an index out of the size of the list.
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Lists elements manipulation

To append elements of one list to another append(); is used.

To delete elements of a list delete(); is used.
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Lists elements manipulation
Examples

(i) Define a list with elements
−2, 3, 5, 1, 89, 34, [45, 67, 98], 31, 89.

(ii) Assign the list to a variable l.

(iii) Append element 99 to the list. Try append(l, [99]);.

(iv) Append elements 67 and 78 to the list. Try
append(l, [67, 78]);.

(v) Remove firts element from the list. Try delete(−2, l);.
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Lists elements manipulation
Remark

append(); and delete(); commands return a new list and do
not modify the existing one.

To modify original list one has to replace the original list.
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Set vs lists

Maxima treats lists and sets as distinct objects.

This feature makes it possible to work with sets that have
members that are either lists or sets.

If you need to apply a set function to a list, use the setify
function to convert it to a set.
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Set vs lists
Examples

(i) setify([2, 8, 4, f ,w , 1]);

(ii) setify([a, b, c, d , e]);

(iii) setify([23, 45, 67, 89]);

(iv) setify([a, a, b, b, c , c]);

(v) setify([2, 2, 3, 3, 4, 4, 4, 4]);
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Expand, Factor, and Simplify
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Evaluation of expressions in Maxima

Simplification of expression is quite a difficult job for a
computer algebra system even though there are established
routines for standard simplification procedures.

When Maxima evaluates expressions it usually does not
perform all “obvious” expansions or simplifications.

However, Maxima provides a couple of commands that try to
do particular simplifications or transformations of an
expression.
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Expand expression
expand (expr);

Expand expression expr.

Products of sums and exponentiated sums are multiplied out.

Numerators of rational expressions which are sums are split
into their respective terms.

Multiplication are distributed over addition at all levels of
expr.
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Expand expression
rateexpand (expr);

For polynomials one should usually use ratexpand(); which
uses a more efficient algorithm.

Command ratexpand also cancels out common divisors in
rational expressions.

Department of Mathematics University of Ruhuna, Mathematical Computing, IMT2b2β 37/64



Expand expression
Examples

Expand following expansions.

(i) (x − y)(x + y)

(ii) (x + 2)2

(iii) (x + 1)5

(iv) (x + 3)3(y + 1)5

(v) (x + y)2/(x2 − y2)

(vi) (x + y)2/(x2 − y2)
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Factor expression
factor(expr);

Factors the expression expr, containing any number of
variables or functions, into factors irreducible over the integers.
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Factor expression
factor(expr);⇒Examples

Factor following expressions.

(i) x2 − y2

(ii) x2 + 4x + 4

(iii) (x + 1)5

(iv) x5 + 5x4 + 10x3 + 10x2 + 5x + 1

(v) y4 + 4xy3 + 6x2y2 + 4x3y + x4

(vi) −8y − 4x + z2(2y + x)

(vii) 20!

(viii) 263 − 1
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Simplify expression

Maxima provides commands to find equivalent but simpler
expression for more complex one.

Thus it applies several rules which embody conventional
notions of simplicity.
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Simplify expression
ratsimp();

The command ratsimp tells maxima to simplify.

However, Maxima by default is set to simplify rational
functions and has been told to ignore algebraic (radical)
simplifications in order to optimize the other types of
simplifications it attempts.

However, when we would like it to also perform algebraic
simplifications we add the instruction algebraic : true;.
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Simplify expression
ratsimp();⇒Examples

Simplify following expressions.

(i) (x − 2)/(x2 − 4)

(ii) (x2 − y2)/(x + y)2

(iii) sin(x/(x2 + x)) = exp((log(x) + 1)2 − log(x)2)

(iv) (x2 + 4x + 4)/(x + 2)

(v) ((x − 1)(3/2) − (x + 1))
√

(x − 1)
√

(x − 1)(x + 1)

(vi) 1/(
√
x − 2)

(vii) Do simplification of 1/(
√
x − 2) with algebraic:true.
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Simplify expression
radcan(expr);

The Maxima function radcan(expr); may be useful for
simplifying expressions which contain logs, exponentials, and
radicals.

For some expressions radcan is quite time consuming.

This is the cost of exploring certain relationships among the
components of the expression for simpli cations based on
factoring and partial fraction expansions of exponents.
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Simplify expression
Functions to extract numerator and denominator

num(expr)

Returns the numerator of expr if it is a ratio.

If expr is not a ratio, expr is returned.

denom(expr)

Returns the denominator of the rational expression expr.
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Linear Algebra

Department of Mathematics University of Ruhuna, Mathematical Computing, IMT2b2β 46/64



Vectors

Vectors are implemented in Maxima by means of lists.

That is, their elements enclosed in square brackets [...].

Vector addition and multiplication with a scalar are performed
by operators +, - and *.

The scalar product is computed by the dot operator ..

* performs a pointwise multiplication.

The k-th element of a vector can be retrieved using [k].
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Vectors
Vectors ⇒ Examples

(i) [3,1,4]+[-1,5,9];

(ii) [4,-3,9]-[4,5,3];

(iii) 3*[4,2,7];

(iv) [2,0,5].[4,7,3];

(v) [3,4,3]*[6,7,1];
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Matrices

A matrix is a rectangular array of numbers, symbols, or
expressions.

The individual items in a matrix are called its elements or
entries.

Matrices are created by means of command matrix which
takes the row vectors of the matrix as its arguments.

These must have the same length.
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Matrices
Operators used for matrices manipulation

Operators Description

A+ B Sum of matrices A and B
A− B Difference of matrices A and B
s ∗ A Multiply matrix A with scalar s
A.B Product of matrices A and B
A∧∧n n-th power of matrix A, i.e., A.A..A
A∧∧(−1) Inverse of matrix A
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Matrices
Operations on matrices

Matrices of the same size can be added or subtracted element
by element.

The rule for matrix multiplication is more complicated, and
two matrices can be multiplied only when the number of
columns in the first equals the number of rows in the second.

∗ and ∧ perform a pointwise multiplication and
exponentiation, respectively.
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Matrices
Operations on matrices⇒Examples

(i) A : matrix([2, 1], [5, 6]);

(ii) B : matrix([1, 0], [7, 3]);

(iii) A+ B;

(iv) 2 ∗ A;
(v) A.B;

(vi) A∧∧3;

(vii) A∧∧(−1);

(viii) A ∗ B;
(ix) A∧2;

(x) B∧5;
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Matrices
Retrieve or replace matrices elements

The i-th rows of a matrix M can be retrieved by means of
index [i].

Element aij can be retrieved or replaced using index [i, j].
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Matrices
Retrieve or replace matrices elements⇒Examples

(i) Define matrix A with rows [3,2],[1,5].

(ii) Retrieve the first row.

(iii) Retrieve the second row.

(iv) Retrieve the second element of the second row.

(v) Replace above element by 12.

(vi) Assign new matrix to B.
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Matrices
More operations on matrices

Command Description
diagmatrix(n, x) Diagonal matrix of size n with diagonal element x
ident(n) Identity matrix of order n
transpose(A) Transpose of matrix A
invert(A) Inverse of matrix A (same as A∧∧(−1))
determinant(A) Determinant of matrix A
rank(A) Rank of matrix A
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Matrices
More operations on matrices⇒Examples

(i) Obtain Identity matrix of order 3.

(ii) Obtain diagonal matrix of size 3 with the diagonal element 6.

(iii) Define matrix A with rows [3,2],[1,4].

(iv) Obtain transpose of matrix A.

(v) Obtain inverse of matrix A.

(vi) Obtain determinant of matrix A.

(vii) Obtain rank of matrix A.
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Matrices
Characteristic equation

The characteristic equation of a matrix A is |A− I.x| = 0,
where I is the identity matrix.

Command charpoly(A,x) returns the characteristic
polynomial for matrix A with respect to variable x.
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Matrices
Characteristic equation⇒Example

(i) Define matrix A with rows [1,2,1],[1,4,4],[7,3,5].

(ii) Obtain the corresponding characteristic equation by hand.

(iii) Use command charpoly(A,x) to obtain above characteristic
equation.
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Matrices
Eigenvalues

The solutions to the characteristic equation are eigenvalues of
the matrix.

Eigenvalues can be computed by means of command
eigenvalues.

It returns a list of two elements.

The first one is the list of eigenvalues while the second
element is a list of their corresponding algebraic multiplicities.
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Matrices
Eigenvalues⇒Example

(i) Define matrix A with rows [1,0],[6,6].

(ii) Obtain the corresponding characteristic equation.

(iii) Obtain eigenvalues using command eigenvalues.
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Matrices
Eigenvectors

If A is a square matrix, a non-zero vector v is an eigenvector
of A if there is a scalar λ such that Av=λv.

The scalar λ is said to be the eigenvalue of A corresponding
to v.

An eigenspace of A is the set of all eigenvectors with the
same eigenvalue together with the zero vector.

However, the zero vector is not an eigenvector.

Department of Mathematics University of Ruhuna, Mathematical Computing, IMT2b2β 61/64



Matrices
Eigenvectors⇒Command to obtain eigenvectors

Command eigenvectors computes both eigenvalues and the
eigenvector.

It returns a list of two elements: the result of eigenvalues and
a list of the corresponding eigenspaces.

Each eigenspace is represented by a list that contain its basis
vectors (“eigenvectors”).
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Matrices
Eigenvectors⇒Command to obtain eigenvectors⇒Example

(i) Define matrix A with rows [1,0],[6,6].

(ii) Obtain eigenvectors using command eigenvectors.
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Thank You
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