
Mathematical Computing
IMT2b2β

Department of Mathematics
University of Ruhuna

A.W.L. Pubudu Thilan

Department of Mathematics University of Ruhuna — Mathematical Computing 1/47



Programming in Maxima

Department of Mathematics University of Ruhuna — Mathematical Computing 2/47



Introduction

Maxima contains all the programming structures required to
build programs of any complexity.

Maxima’s base language is Lisp, but Maxima can either be
programmed in Lisp, or in its own language.

Department of Mathematics University of Ruhuna — Mathematical Computing 3/47



Comments in Maxima

A comment in Maxima input is any text between /* and */.

Comments can be nested to arbitrary depth.

The /* and */ delimiters form matching pairs.

There must be the same number of /* as there are */.

Eg:
1 /* i is a variable of interest */ i : 12;

2 /* Comments /* can be nested /* to any
depth */ */ */ 1 + uvt;

Department of Mathematics University of Ruhuna — Mathematical Computing 4/47



Branching

Department of Mathematics University of Ruhuna — Mathematical Computing 5/47



About branching

Branching controls the execution of a program.

Statements in a program are executed only if a condition
holds.

The condition determines the choice of branch we want our
program to execute.

“;” or “$” is only used after the complete if-else statement.

Department of Mathematics University of Ruhuna — Mathematical Computing 6/47



Formal syntax

if cond 1 then
expr 1

else
expr 0

The value of this expression:

evaluates to expr 1 if cond 1 evaluates to true.

otherwise the expression evaluates to expr 0.

Department of Mathematics University of Ruhuna — Mathematical Computing 7/47



Formal syntax
Example code

user:17$
if (user < 18) then

print (”User is 18 or younger”)
else

print (”User is older than 18”)$

Output is
User is 18 or younger

Department of Mathematics University of Ruhuna — Mathematical Computing 8/47



The condition

Must be able to be evaluated to either true or false.

Uses operators for comparing things.

In nearly all situations, operators are one or more of
relational operators or logical operators.

Department of Mathematics University of Ruhuna — Mathematical Computing 9/47



Relational operators

Operator Symbol
Less than <

Less than or equal to <=

Greater than >

Greater than or equal to >=

Equality =

Negation of equality #

Department of Mathematics University of Ruhuna — Mathematical Computing 10/47



Relational operators
Use of relational operators

if(1 < 2)then
print(“I like Maxima”)

else
print(”I like Mathematica”)$

Output is
I like Maxima

Department of Mathematics University of Ruhuna — Mathematical Computing 11/47



Relational operators
Use of relational operators

if(1 >= 2) then
print(“I like Maxima”)

else
print(”I like Mathematica”)$

Output is
I like Mathematica

Department of Mathematics University of Ruhuna — Mathematical Computing 12/47



Logical operators

Operator Symbol
and and

or or

not not

Department of Mathematics University of Ruhuna — Mathematical Computing 13/47



Logical operators
Use of logical operators

if ((1 < 2)and(2 < 3)) then
print(“I like Maxima”)

else
print(”I like Mathematica”)$

Output is
I like Maxima

Department of Mathematics University of Ruhuna — Mathematical Computing 14/47



Logical operators
Use of logical operators

if ((1 < 2)and(2 > 3)) then
print(“I like Maxima”)

else
print(”I like Mathematica”);

Output is
I like Mathematica

Department of Mathematics University of Ruhuna — Mathematical Computing 15/47



More complex if-else statements

if cond 1 then
expr 1

elseif cond 2 then
expr 2

elseif ...
else expr 0

Evaluates to expr k if cond k is true and all preceding
conditions are false.

If none of the conditions are true, the expression evaluates to
expr 0.

Department of Mathematics University of Ruhuna — Mathematical Computing 16/47



More complex if-else statements
Excercise

Write a programme to assign a grade based on the value of a test
score: an A for a score of 90% or above, a B for a score of 80% or
above, and so on.

Department of Mathematics University of Ruhuna — Mathematical Computing 17/47



Omiting ending else in if-else

if cond 1 then
expr 1

is equivalent to

if cond 1 then
expr 1

else
false

Department of Mathematics University of Ruhuna — Mathematical Computing 18/47



Omiting ending else in if-else
Example code

if (1 = (2 + 4 + 6)/(6 + 4 + 2)*(2-1)) then
print(“You are welcome”);

if (1 = (2 + 4 + 6)/(6 + 4 + 2) * 2) then
print(“You are welcome”);

Department of Mathematics University of Ruhuna — Mathematical Computing 19/47



Functions and if statements

Define following function in Maxima.

f (x) =


0 x < 0
x 0 ≤ x < 1
1 x > 1

code
f(x):= if (x < 0) then

0
else if (0 <= x) and (x < 1) then

x
else

1

Department of Mathematics University of Ruhuna — Mathematical Computing 20/47



Functions and if statements
Excercise

Define following function in Maxima and plot the function in the
interval [-10,10].

f (x) =



(x + 5)2 x < −5
x + 5

2
−5 ≤ x < 0

−x + 5

2
0 ≤ x < 5

(x − 5)2 x ≥ 5

Department of Mathematics University of Ruhuna — Mathematical Computing 21/47



Iteration

Department of Mathematics University of Ruhuna — Mathematical Computing 22/47



About iteration

The do statement is used for performing iteration.

The do statement can be used in Maxima analogous to that
used in several other programming language.

Also it can be used in different ways in Maxima.

There are three variants of this form that differ only in their
terminating conditions

Department of Mathematics University of Ruhuna — Mathematical Computing 23/47



Three form of do statement

1 for variable:initial value step increment thru limit do body

2 for variable:initial value step increment while condition do
body

3 for variable:initial value step increment unless condition do
body

Department of Mathematics University of Ruhuna — Mathematical Computing 24/47



Three form of do statement
Cont...

The reserved words for the loop are for, step, thru, while,
unless, and do.

The initial value, increment, limit, and body can be any
expressions.

If the increment is 1 then step 1 may be omitted.

The step may be given after the termination condition or
limit as well.

Department of Mathematics University of Ruhuna — Mathematical Computing 25/47



The execution of the do statement

The execution of the do statement proceeds by first assigning the
initial value to the variable. Then:

1 If the variable has exceeded the limit of a thru specification,
or if the condition of the unless is true, or if the condition of
the while is false then the do terminates.

2 The body is evaluated.

3 The increment is added to the variable.

Department of Mathematics University of Ruhuna — Mathematical Computing 26/47



The execution of the do statement
Cont...

The process from (1) to (3) is performed repeatedly until the
termination condition is satisfied.

One may also give several termination conditions in which
case the do terminates when any of them is satisfied.

Department of Mathematics University of Ruhuna — Mathematical Computing 27/47



The execution of the do statement
Cont...

In general the thru test is satisfied when the variable is greater
than the limit if the increment was non-negative, or when the
variable is less than the limit if the increment was negative.

The increment and limit may be non-numeric expressions as
long as this inequality can be determined.

However, unless the increment is syntactically negative at the
time the do statement is input, Maxima assumes it will be
positive when the do is executed.

If it is not positive, then the do may not terminate properly.

Department of Mathematics University of Ruhuna — Mathematical Computing 28/47



Example code

Find the sum of the integers from 1 to 10.

code
sum:0; /* initialize */
for i: 1 step 1 thru 10 do
sum : sum + i ;/* accumulate */
print(sum); /* output */

55

Department of Mathematics University of Ruhuna — Mathematical Computing 29/47



Excercise

(i) Write a program to find summation of numbers from 1 to 100.

(ii) Write a program to find summation of even numbers from 1
to 2000.

(iii) Write a program to find summation of odd numbers from 1 to
2000.

(iv) Write a program to plot sin(nx) for n = 1, 2, 3, 4, 5 in the
range of −π ≤ x ≤ π.

Department of Mathematics University of Ruhuna — Mathematical Computing 30/47



Different implementation

Same results can be obtained from different implementation of do.

1 for i: 1 step 1 thru 10 do
print(i);

2 for i: 1 step 1 while (i <= 10) do
print(i);

3 for i: 1 step 1 unless (i > 10) do
print(i);

Department of Mathematics University of Ruhuna — Mathematical Computing 31/47



Execute block of code

In Maxima the block construct simply groups together a list
of commands and treats them as a single statement.

for variable:initial value step increment thru limit
block(
statement 1,
statement 2,
statement 3,
.,
.,
.,
statement n
);

Department of Mathematics University of Ruhuna — Mathematical Computing 32/47



Execute block of code
Example code

The segment below generates and displays random numbers
between 0.0 and 1.0 as long as the values are less than 0.7. The
segment also counts how many of the random values are in that
range.

r:random(1.0);
count:0;

for i: 1 step 1 while(r < 0.7) do
block(
count:count+1,
r:random(1.0),
print(r)
);
print(count);

Department of Mathematics University of Ruhuna — Mathematical Computing 33/47



Execute block of code
Excercise 1

(i) Write a programe to find 5!.

(ii) Implement following algorithm using Maxima.
x=1 , y=0 , z=2
while (0 ≤ (x − y) < 5)
y=zx
x=y+z
z=z+1
end while

Department of Mathematics University of Ruhuna — Mathematical Computing 34/47



Motivating example
Parameter and argument

(a) Use Maxima to define a function to get the volume of a
sphere when its radius is given.

(b) Use the above defined function to get the volume of the
sphere when its radius is given as 6.

Department of Mathematics University of Ruhuna — Mathematical Computing 35/47



Parameter and argument

In Maxima, we can define a function to get the volume of a
sphere as follows:

volume(r) : =
4

3
∗%pi ∗ r∧3;

The argument is the input passed to a function, whereas the
parameter is the variable inside the implementation of the
function.

Therefore, in our example, r is the parameter, while if this is
called as volume(6), then 6 is an argument.

Department of Mathematics University of Ruhuna — Mathematical Computing 36/47



Parameter and argument
Example

The following statement defines a function that is named tax
and has one parameter named price.

tax(price) := price ∗
(

10

100

)
;

After the function has been defined, it can be invoked as
follows by passing an argument.

tax(1000);

When this happens, 1000 will be assigned to price, and the
function begins calculating its result.

Department of Mathematics University of Ruhuna — Mathematical Computing 37/47



Motivating example

(a) Use Maxima to define a function to get both the volume and
the surface area of a sphere when its radius is given.

(b) Use the above defined function to get the volume and the
surface area of a sphere when its radius is given as 6.

Department of Mathematics University of Ruhuna — Mathematical Computing 38/47



Motivating example
Maxima code

sphere(r) := block([area],

area : bfloat(4 ∗%pi ∗ r ∗ r),
print(”Area” = area),

volume : bfloat((4/3) ∗%pi ∗ r3),
print(”Volume” = volume)

)$

sphere(6)$

Identify global and local variables in the following program.

Department of Mathematics University of Ruhuna — Mathematical Computing 39/47



Global and local variables

The value of a global variable can be accessed in anywhere.

But the value of a local variable can only be accessed in the
block where it is declared.

When execution of the block starts the local variable is
available, and when the block ends the local variable ’dies’.

Department of Mathematics University of Ruhuna — Mathematical Computing 40/47



Blocks and local variables

The first statement in your block should normally be
[v1, v2, ..., vn], where v1, v2, etc., are variables that you wish
to be local.

If you do not want any local variables, then omit the local
statement.

When Maxima enters block(), it saves the current values of
the variables in the [v 1, v 2, ..., v n] statement.

When Maxima exits the block() in which the variable was
declared as local, its current properties are removed and the
saved values/properties are restored.

Department of Mathematics University of Ruhuna — Mathematical Computing 41/47



Example 1

Consider the initial value problem

y ′ + y = x , y(0) = 1.

(i) Find exact solution of the above initial value problem.

(ii) Use Euler’s method with step size 0.2 to get numerically
approximated solutions in the interval 0 ≤ x ≤ 1.

Department of Mathematics University of Ruhuna — Mathematical Computing 42/47



Example 1
Euler Method Algorithm

define f (x , y)
input x0 and y0
input xend
input the number of steps, n
calculate step size h
set x = x0
set y = y0
for i from 1 to n do
y : f (x , y) ∗ h + y ,
x : x + h,
print(x , y)
end

Department of Mathematics University of Ruhuna — Mathematical Computing 43/47



Example 2

Use the Runge-Kutta method of order four to obtain
approximations to the solution of the intial-value problem

y ′ =
(1 + y)

x
, y(1) = 1,

in the range 1 ≤ t ≤ 10 with h = 0.1.

Department of Mathematics University of Ruhuna — Mathematical Computing 44/47



Example 2
Code

runge(f , x0, y0, x1, n) := block([h, x , y , vx , vy , k1, k2, k3, k4],

h : bfloat((x1− x0)/(n − 1)),

x : x0,

y : y0,

vx : makelist(0, n + 1),

vy : makelist(0, n + 1),

vx [1] : x0,

vy [1] : y0,

Department of Mathematics University of Ruhuna — Mathematical Computing 45/47



Example 2
Code ⇒ Cont...

for i from 1 thru n do(

k1 : bfloat(h ∗ f (x , y)),
k2 : bfloat(h ∗ f (x + h/2, y + k1/2)),

k3 : bfloat(h ∗ f (x + h/2, y + k2/2)),

k4 : bfloat(h ∗ f (x + h, y + k3)),

vy [i + 1] : y : y + (k1 + 2 ∗ k2 + 2 ∗ k3 + k4)/6,

vx [i + 1] : x : x + h

),

[vx , vy ]

)$

[x , y ] : runge(lambda([x , y ], (1 + y)/x), 0, 1, 10, 101)$

Department of Mathematics University of Ruhuna — Mathematical Computing 46/47



The End!

Department of Mathematics University of Ruhuna — Mathematical Computing 47/47


