Mathematical Computing IMT2b2 β

Department of Mathematics University of Ruhuna

A.W.L. Pubudu Thilan

Programming in Maxima

Introduction

- Maxima contains all the programming structures required to build programs of any complexity.

■ Maxima's base language is Lisp, but Maxima can either be programmed in Lisp, or in its own language.

Comments in Maxima

■ A comment in Maxima input is any text between /* and */.

- Comments can be nested to arbitrary depth.
- The /* and */ delimiters form matching pairs.
- There must be the same number of $/ *$ as there are */.

Eg:
1 /* i is a variable of interest */ $\mathrm{i}: 12$;
2 /* Comments /* can be nested /* to any depth */ */ */ 1 + uvt;

Branching

About branching

- Branching controls the execution of a program.
- Statements in a program are executed only if a condition holds.

■ The condition determines the choice of branch we want our program to execute.

■ ";" or "\$" is only used after the complete if-else statement.

Formal syntax

if cond_1 then
expr_1
else
expr_0
The value of this expression:
■ evaluates to expr_1 if cond_1 evaluates to true.

- otherwise the expression evaluates to expr_0.

Formal syntax
 Example code

user:17\$
if (user <18) then
print ("User is 18 or younger")
else
print ("User is older than 18")\$

Output is
User is 18 or younger

The condition

■ Must be able to be evaluated to either true or false.

- Uses operators for comparing things.

■ In nearly all situations, operators are one or more of relational operators or logical operators.

Relational operators

Operator	Symbol
Less than	$<$
Less than or equal to	$<=$
Greater than	$>$
Greater than or equal to	$>=$
Equality	$=$
Negation of equality	$\#$

Relational operators

Use of relational operators
if $(1<2)$ then print("I like Maxima")
else print("I like Mathematica")\$

Output is
I like Maxima

Relational operators

Use of relational operators
if $(1>=2)$ then
print("I like Maxima")
else
print("I like Mathematica")\$

Output is
I like Mathematica

Logical operators

Operator	Symbol
and	and
or	or
not	not

Logical operators

Use of logical operators
if $((1<2)$ and $(2<3))$ then print("I like Maxima")
else print("I like Mathematica")\$

Output is
I like Maxima

Logical operators

Use of logical operators
if $((1<2)$ and $(2>3))$ then print("I like Maxima")
else print("I like Mathematica");

Output is
I like Mathematica

More complex if-else statements

if cond_1 then expr_1
elseif cond_2 then
expr_2
elseif ...
else expr_0

■ Evaluates to expr_k if cond_k is true and all preceding conditions are false.

- If none of the conditions are true, the expression evaluates to expr_0.

More complex if-else statements

Write a programme to assign a grade based on the value of a test score: an A for a score of 90% or above, a B for a score of 80% or above, and so on.

Omiting ending else in if-else

- if cond_1 then expr_1
is equivalent to
- if cond_1 then expr_1
else
false

Omiting ending else in if-else

 Example code- if $(1=(2+4+6) /(6+4+2) *(2-1))$ then print("You are welcome");
- if $(1=(2+4+6) /(6+4+2) * 2)$ then print("You are welcome");

Functions and if statements

Define following function in Maxima.

$$
f(x)= \begin{cases}0 & x<0 \\ x & 0 \leq x<1 \\ 1 & x>1\end{cases}
$$

code

$$
\begin{aligned}
& \overline{f(x):}=\text { if }(x<0) \text { then } \\
& 0 \\
& \text { else if }(0<=x) \text { and }(x<1) \text { then } \\
& x
\end{aligned}
$$

else

$$
1
$$

Functions and if statements

Excercise

Define following function in Maxima and plot the function in the interval $[-10,10]$.

$$
f(x)= \begin{cases}(x+5)^{2} & x<-5 \\ \frac{x+5}{2} & -5 \leq x<0 \\ \frac{-x+5}{2} & 0 \leq x<5 \\ (x-5)^{2} & x \geq 5\end{cases}
$$

Iteration

About iteration

- The do statement is used for performing iteration.

■ The do statement can be used in Maxima analogous to that used in several other programming language.

■ Also it can be used in different ways in Maxima.

- There are three variants of this form that differ only in their terminating conditions

Three form of do statement

1 for variable:initial_value step increment thru limit do body
2 for variable:initial_value step increment while condition do body

3 for variable:initial_value step increment unless condition do body

Three form of do statement

- The reserved words for the loop are for, step, thru, while, unless, and do.

■ The initial_value, increment, limit, and body can be any expressions.

- If the increment is 1 then step 1 may be omitted.

■ The step may be given after the termination condition or limit as well.

The execution of the do statement

The execution of the do statement proceeds by first assigning the initial_value to the variable. Then:

1 If the variable has exceeded the limit of a thru specification, or if the condition of the unless is true, or if the condition of the while is false then the do terminates.

2 The body is evaluated.
3 The increment is added to the variable.

The execution of the do statement Cont...

- The process from (1) to (3) is performed repeatedly until the termination condition is satisfied.
- One may also give several termination conditions in which case the do terminates when any of them is satisfied.

The execution of the do statement

 Cont...- In general the thru test is satisfied when the variable is greater than the limit if the increment was non-negative, or when the variable is less than the limit if the increment was negative.
- The increment and limit may be non-numeric expressions as long as this inequality can be determined.

■ However, unless the increment is syntactically negative at the time the do statement is input, Maxima assumes it will be positive when the do is executed.

- If it is not positive, then the do may not terminate properly.

Example code

Find the sum of the integers from 1 to 10 .
code
sum:0; /* initialize */
for $\mathrm{i}: 1$ step 1 thru 10 do
sum : sum +i;/* accumulate */
print(sum); /* output */

55

Excercise

(i) Write a program to find summation of numbers from 1 to 100 .
(ii) Write a program to find summation of even numbers from 1 to 2000 .
(iii) Write a program to find summation of odd numbers from 1 to 2000.
(iv) Write a program to plot $\sin (n x)$ for $n=1,2,3,4,5$ in the range of $-\pi \leq x \leq \pi$.

Different implementation

Same results can be obtained from different implementation of do.

1 for i : 1 step 1 thru 10 do print(i);

2 for $i: 1$ step 1 while $(i<=10)$ do print(i);

3 for $i: 1$ step 1 unless $(i>10)$ do print(i);

Execute block of code

- In Maxima the block construct simply groups together a list of commands and treats them as a single statement.
for variable:initial_value step increment thru limit block(
statement 1,
statement 2,
statement 3,
"
",
",
statement n
);

Execute block of code

Example code

The segment below generates and displays random numbers between 0.0 and 1.0 as long as the values are less than 0.7 . The segment also counts how many of the random values are in that range.

r:random(1.0);

count:0;
for i: 1 step 1 while $(r<0.7)$ do block(
count:count+1,
r:random(1.0),
print(r)
);
print(count);

Execute block of code

(i) Write a programe to find 5!.
(ii) Implement following algorithm using Maxima.

$$
\begin{aligned}
& x=1, y=0, z=2 \\
& \text { while }(0 \leq(x-y)<5)
\end{aligned}
$$

$y=z x$
$x=y+z$
$z=z+1$
end while

Motivating example

Parameter and argument

(a) Use Maxima to define a function to get the volume of a sphere when its radius is given.
(b) Use the above defined function to get the volume of the sphere when its radius is given as 6 .

Parameter and argument

- In Maxima, we can define a function to get the volume of a sphere as follows:

$$
\text { volume }(\mathbf{r}):=\frac{4}{3} * \% \mathbf{p i} * \mathbf{r}^{\wedge} 3
$$

- The argument is the input passed to a function, whereas the parameter is the variable inside the implementation of the function.
- Therefore, in our example, \mathbf{r} is the parameter, while if this is called as volume(6), then $\mathbf{6}$ is an argument.

Parameter and argument Example

- The following statement defines a function that is named tax and has one parameter named price.

$$
\operatorname{tax}(\text { price }):=\text { price } *\left(\frac{10}{100}\right) ;
$$

■ After the function has been defined, it can be invoked as follows by passing an argument.

$$
\operatorname{tax}(1000) ;
$$

- When this happens, 1000 will be assigned to price, and the function begins calculating its result.

Motivating example

(a) Use Maxima to define a function to get both the volume and the surface area of a sphere when its radius is given.
(b) Use the above defined function to get the volume and the surface area of a sphere when its radius is given as 6 .

Motivating example

Maxima code

$$
\begin{aligned}
& \text { sphere }(r):=\text { block }([\text { area }], \\
& \text { area }: \text { bfloat }(4 * \% \text { pi } * r * r), \\
& \text { print }(" \text { Area" }=\text { area }), \\
& \text { volume }: \text { bfloat }\left((4 / 3) * \% \text { pi } * r^{3}\right), \\
& \text { print }(" V o l u m e " ~=\text { volume }) \\
&) \$ \\
& \text { sphere }(6) \$
\end{aligned}
$$

Identify global and local variables in the following program.

Global and local variables

- The value of a global variable can be accessed in anywhere.
- But the value of a local variable can only be accessed in the block where it is declared.
- When execution of the block starts the local variable is available, and when the block ends the local variable 'dies'.

Blocks and local variables

- The first statement in your block should normally be [$\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$], where $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, etc., are variables that you wish to be local.
- If you do not want any local variables, then omit the local statement.
- When Maxima enters block(), it saves the current values of the variables in the $\left[\mathbf{v} _\mathbf{1}, \mathbf{v} _\mathbf{2}, \ldots, \mathbf{v} _\mathbf{n}\right]$ statement.
- When Maxima exits the block() in which the variable was declared as local, its current properties are removed and the saved values/properties are restored.

Example 1

Consider the initial value problem

$$
y^{\prime}+y=x, \quad y(0)=1
$$

(i) Find exact solution of the above initial value problem.
(ii) Use Euler's method with step size 0.2 to get numerically approximated solutions in the interval $0 \leq x \leq 1$.

Example 1

Euler Method Algorithm

define $f(x, y)$
input $x 0$ and $y 0$
input xend
input the number of steps, n
calculate step size h
set $x=x 0$
set $y=y 0$
for i from 1 to n do
$y: f(x, y) * h+y$,
$x: x+h$,
print (x, y)
end

Example 2

Use the Runge-Kutta method of order four to obtain approximations to the solution of the intial-value problem

$$
y^{\prime}=\frac{(1+y)}{x}, \quad y(1)=1,
$$

in the range $1 \leq t \leq 10$ with $h=0.1$.

Example 2

```
runge \((f, x 0, y 0, x 1, n):=\operatorname{block}([h, x, y, v x, v y, k 1, k 2, k 3, k 4]\),
\(h\) : bfloat \(((x 1-x 0) /(n-1))\),
\(x: x 0\),
\(y: y 0\),
\(v x: \operatorname{makelist}(0, n+1)\),
vy : makelist \((0, n+1)\),
\(v x[1]: x 0\),
vy[1] : y0,
```


Example 2

Code \Rightarrow Cont...

> for i from 1 thru $n \operatorname{do}($
> $k 1: \operatorname{bfloat}(h * f(x, y))$,
> $k 2: \operatorname{bfloat}(h * f(x+h / 2, y+k 1 / 2))$,
> $k 3: \operatorname{bfloat}(h * f(x+h / 2, y+k 2 / 2))$,
> $k 4: \operatorname{bfloat}(h * f(x+h, y+k 3))$,
> $v y[i+1]: y: y+(k 1+2 * k 2+2 * k 3+k 4) / 6$,
> $v x[i+1]: x: x+h$
> $)$,
> $[v x, v y]$
> $) \$$
> $[x, y]: \operatorname{runge}($ lambda $([x, y],(1+y) / x), 0,1,10,101) \$$

The End!

