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Abstract
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In this paper, we calculate several important information measures of power-law dis-
tributions with continuous random variables such as differential entropy, information di-
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Abstract

When the probability of measuring a particular value of some quantity varies inversely
as a power of that value, the quantity is said to follow a power law. Power laws can
be seen very frequently in physics, biology, earth and planetary sciences, economics and
finance, computer science and the social sciences.

In this paper, we calculate several important information measures of power-law dis-
tributions with continuous random variables such as differential entropy, information di-
vergence and Fisher information.

1 Introduction

A continuous real random variable with a power-law distribution [1] has a probability p(x)dx
of taking a value in the interval from x to x+ dx, where

p(x) = p(x; θ) = Zx−θ (1)

with θ > 0. The real parameter θ is called the exponent of the power law and Z is the
normalization constant. There must be some lowest value xmin at which the power law is
obeyed, and we consider only the real numbers x in the range xmin ≤ x <∞. The constant Z
in (1) is given by the normalization requirement that

1 =

∫ ∞
xmin

p(x; θ)dx = Z
∫ ∞
xmin

x−θdx =
Z

1− θ

[
x−θ+1

]∞
xmin

. (2)

We see immediately that this only makes sense if θ > 1, since otherwise the right-hand side of
the equation would diverge; power laws with exponents less than unity cannot be normalized
and do not normally occur in nature. If θ > 1 then (2) gives

Z = (θ − 1)xθ−1min

and the correct normalized expression for the power law itself is

p(x; θ) =
(θ − 1)

xmin

(
x

xmin

)−θ
. (3)

It should be mentioned that power laws also occur in many situations other than the statistical
distributions of quantities. For example, Newton’s famous 1

r2
law for gravity has a power-law

form with exponent θ = 2. While such laws are certainly interesting in their own way, they are
not the topic of this paper. Now we outline some examples obeying power laws. It has been
shown by several authors that the cumulative distributions of different quantities measured in
physical, biological, technological and social systems follow power laws. Some of them are:

Word frequency, Citations of scientific papers, Number of hits received by the web sites,
Copies of books sold, Telephone calls, Magnitude of earthquakes, Intensity of wars, Wealth of
the richest people, frequencies of family names, population of cities.

2 Information measures of probability distributions

2.1 Diffrential entropy

The differential entropy h(p) of a continuous random variable X with density p(x) is defined as

h(p) = −
∫
S

p(x) ln p(x)dx,

where S is the support set of the random variable.
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2.2 Information divergence

The information divergence (a.k.a. Kullback-Leibler distance or relative entropy) D(p‖q) be-
tween two probability densities p(x) and q(x) on the same set X is defined as

D(p‖q) =

∫
p(x) ln

p(x)

q(x)
dx.

Here D(p‖q) is finite only if the support set of p(x) is contained in the support set of q(x).

2.3 Statistical model of probability densities and Fisher information
matrix

Consider a family S of probability densities on the set X (= Rn). Suppose each element of S, a
probability density function, may be parameterized using n real-valued variables (θ1, θ2, . . . , θn)
so that

S = {pθ = p(x : θ)|θ = (θ1, θ2, . . . , θn) ∈ Θ},

where Θ is a subset of Rn and the mapping θ 7→ pθ is injective and infinitely differentiable for
each x ∈ X . We call such S an n-dimensional statistical model or a parametric model [2] on
X .

Now, given a point θ ∈ Θ, the Fisher information matrix of S at a point θ is the n × n
matrix

G(θ) := [gij(θ)],

where the (i, j)th element gij(θ) is defined by the equation

gij(θ) = Eθ[∂i`θ∂j`θ] =

∫
∂i`θ∂j`θp(x : θ)dx,

where ∂i := ∂
∂θi

, the log-likelihood function `θ(x) = `(x; θ) = ln p(x; θ) and Eθ denotes the
expectation with respect to the distribution pθ.

3 Calculation of information quantities of power-law dis-

tributions

3.1 Statistical model of power-law distributions

Power-law distributions are parameterized using one real parameter θ as

p(x; θ) =
(θ − 1)

xmin

(
x

xmin

)−θ
.

and S = {p(x; θ)} of such distributions becomes an one dimensional statistical model and
geometrically this can be viewed as a Riemannian manifold with the coordinate system θ.

3.2 Calculation of diiffrential entropy, information divergence and
Fisher information

The expressions obtained for diiffrential entropy, information divergence and Fisher information
are

lnxmin − ln(θ − 1) +
θ

θ − 1
,
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ln

(
θ − 1

β − 1

)
−
(
θ − β
θ − 1

)
and

1

(θ − 1)2

respectively. The detail calculations are given in the appendix.

4 Conclusion & Discussion

We have derived after fairly lengthy calculations the expressions for diiffrential entropy, infor-
mation divergence and Fisher information of power-law distributions and hope that these reults
would be useful in studying other characteristics of power-law distributions from information
theoretic or information geometric point of view.
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Appendix

Differential entropy

Let
h(p) = −

∫
p(x; θ) ln p(x; θ) dx

= −
∫ θ − 1

xmin

(
x

xmin

)−θ
ln
θ − 1

xmin

(
x

xmin

)−θ
dx

= −
∫ θ − 1

(xmin)(−θ+1)
x−θ

[
(ln(θ − 1)− lnxmin)− θ ln

(
x

xmin

)]
dx

= − θ − 1

(xmin)(−θ+1)
[ln(θ − 1)− lnxmin]

∫
x−θ dx

+
θ − 1

(xmin)(−θ+1)
θ
∫
x−θ lnx dx− θ − 1

(xmin)(−θ+1)
lnxmin

∫
x−θ dx

= − (θ − 1)

(xmin)(−θ+1)
[(ln(θ − 1)− lnxmin)]

[
x(−θ+1)

−θ+1

]
+ θ(θ−1)
x
(−θ+1)
min

[
−x(−θ+1)

min

−θ+1
lnxmin + 1

−θ+1

x
(−θ+1)
min

−θ+1

]
− θ(θ−1)

x
(−θ+1)
min

lnxmin

[
x(−θ+1)

−θ+1

]∞
xmin

Since[
x(−θ+1)

−θ+1

]∞
xmin

= −x
(−θ+1)
min

−θ+1

= − (θ−1)
x
(−θ+1)
min

[ln(θ − 1)− lnxmin]

[
−x

(−θ+1)
min

−θ+1

]
+ θ θ−1

θ−1 lnxmin + θ
θ−1 − (−θ lnxmin) = lnxmin −

ln(θ − 1) + θ lnxmin + θ
θ−1 − θ lnxmin
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= lnxmin − ln(θ − 1) + θ
θ−1

Information divergence

D(p ‖ q) =
∫
p(x) ln

p(x)

q(x)
dx

=
∫ θ − 1

xmin

(
x

xmin

)−θ
ln

θ − 1

xmin

(
x

xmin

)−θ
β − 1

xmin

(
x

xmin

)−β dx
=
∫ θ − 1

xmin

(
x

xmin

)−θ(
ln
θ − 1

xmin

(
x

xmin

)−θ
− ln

β − 1

xmin

(
x

xmin

)−β)
dx

Consider

ln
θ − 1

xmin

(
x

xmin

)−θ
− ln

β − 1

xmin

(
x

xmin

)−β
= ln(θ − 1)− lnxmin − θ ln

x

xmin
− ln(β − 1) + ln xmin + β ln

x

xmin

= ln

(
θ − 1

β − 1

)
− θ lnx+ θ lnxmin + β lnx− β lnxmin

= ln

(
θ − 1

β − 1

)
− (θ − β) lnx+ (θ − β) lnxmin

D(p ‖ q) =
∫ θ − 1

x−θ+1
min

x−θ[ln

(
θ − 1

β − 1

)
− (θ − β) lnx+ (θ − β) lnxmin] dx

= [ln

(
θ − 1

β − 1

)
+ (θ − β) lnxmin]

θ − 1

x−θ+1
min

∞∫
xmin

x−θ dx− (θ − β)
θ − 1

x−θ+1
min

∞∫
xmin

x−θ lnx dx

= [ln(
θ − 1

β − 1
)+(θ−β) lnxmin]

θ − 1

x−θ+1
min

[
x−θ+1

−θ + 1

]∞
xmin

−(θ−β)
θ − 1

x−θ+1
min

[
x−θ+1
min

θ − 1
lnxmin+ 1

(θ−1)2xmin
−θ+1]

= [ln(
θ − 1

β − 1
) + (θ − β) lnxmin]

θ − 1

x−θ+1
min

x−θ+1
min

θ − 1
− (θ − β) lnxmin −

(
θ − β
θ − 1

)
= ln

(
θ − 1

β − 1

)
−
(
θ − β
θ − 1

)

Fisher information

p(x) = Zx−θ =
θ − 1

xmin

(
x

xmin

)−θ
pθ(x) = p(x; θ) =

θ − 1

xmin

(
x

xmin

)−θ
lθ(x) = ln pθ(x) = ln(θ − 1)− ln(xmin)− θ ln

(
x

xmin

)
d

dθ
lθ(x) =

1

θ − 1
− ln

(
x

xmin

)
g(θ) = Eθ

[(
1

θ − 1
− ln

(
X

xmin

))2
]

g(θ) = Eθ

[(
1

θ − 1

)2
]
− Eθ

[(
2

θ − 1

)
(lnX − lnxmin)

]
+ Eθ[(lnX − lnxmin)2]
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=

(
1

θ − 1

)2

+

(
2

θ − 1

)
lnxmin−

(
2

θ − 1

)
Eθ[lnX]+Eθ[(lnX)2]−2 lnxminEθ[lnX]+(ln xmin)2

Eθ[(lnX)2] =
∫∞
xmin

(lnx)2p(x; θ) dx

=
∫

(lnx)2
θ − 1

xmin

(
x

xmin

)−θ
dx

=
θ − 1

x−θ+1
min

∫
x−θ(lnx)2 dx

By substituting v = (lnx)2 and du = x−θdx we get,
dv

dx
= 2.

1

x
lnx and u =

x−θ+1

−θ + 1
,

Then,∫
(lnx)2x−θdx =

x−θ+1

−θ + 1
(lnx)2 −

∫ x−θ+1

−θ + 1
.2 lnx.

1

x
dx

=

[
x−θ+1

−θ + 1
(lnx)2

]∞
xmin

− 2

−θ + 1

∫∞
xmin

x−θ lnx dx

=
−x−θ+1

min

−θ + 1
(lnxmin)2 − 2

−θ + 1

[
−x−θ+1

min

−θ + 1
lnxmin +

1

−θ + 1

x−θ+1
min

−θ + 1

]
Therefore ,

Eθ[(lnX)2] =
θ − 1

x−θ+1
min

{
−x−θ+1

min

−θ + 1
(lnxmin)2+

2 lnxmin
(−θ + 1)(−θ + 1)

x−θ+1
min −

2x−θ+1
min

(−θ + 1)(−θ + 1)(−θ + 1)

}
= (lnxmin)2 +

2 lnxmin
θ − 1

+
2

(θ − 1)2

g(θ) =
1

(θ − 1)2
+

2

θ − 1
lnxmin−

2

θ − 1

[
lnxmin +

1

θ − 1

]
+(lnxmin)2+

2

θ − 1
lnxmin+

2

(θ − 1)2
−

2 lnxmin

[
lnxmin +

1

θ − 1

]
+ (lnxmin)2

=
1

(θ − 1)2
.

We have used following results to derive the above expression for Fisher information. 〈x〉 =∫∞
xmin

xp(x) dx

〈lnx〉 =
∫∞
xmin

(lnx)p(x) dx

=
∫∞
xmin

(lnx)
θ − 1

xmin

(
x

xmin

)−θ
dx

=
θ − 1

xminx
−θ
min

∫∞
xmin

x−θ lnx dx∫
v du = uv −

∫
u dv

v = lnx and du = x−θdx
d

dx
v =

1

x
and u =

x−θ+1

−θ + 1∫
lnx.x−θ dx =

x−θ+1

θ + 1
.lnx−

∫ x−θ+1

−θ + 1
.
1

x
dx− 1

1− θ
∫
x−θ dx

=
[
x−θ+1

−θ+1
lnx
]∞
xmin
− 1

−θ + 1

[
x−θ+1

−θ + 1

]∞
xmin

= 0− xmin
−θ+1

lnxmin + 1
−θ+1

x−θ+1
min

−θ+1

〈lnx〉 =
θ − 1

x−θ+1
min

(−1)
x−θ+1
min

−θ + 1
lnxmin +

θ − 1

x−θ+1
min

x−θ+1
min

(−θ + 1)(−θ + 1)
= lnxmin −

1

−θ + 1
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