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量子ボルツマンマシンに関する情報幾何学的研究

ヤーパーゲー ニハール

概要

この論文では、確率的ニューラルネットワークの一種として知られているボルツマンマシ

ン（classical Boltzmann machine, 略して CBM）の量子力学系への拡張を考える。具体的に

は、CBM の平衡確率分布の拡張とみなせるような量子状態（密度作用素）を考え、それを

量子ボルツマンマシン (quantum Boltzmann machine, 略して QBM）と呼ぶ。CBM と同様

に、QBM も二種類の実数値パラメータを持つ。すなわち、しきい値（物理的には外場を表

す）h と結合定数 w である。これらのパラメータは、スピングラスの場合のような確率変数

ではなく、任意ではあるが確定した（deterministic な）値を持つものとする。CBM は、単

にニューラルネットワークの一種と言うにとどまらず、統計学的および物理学的な観点から

さまざまな重要な性質を持つ。これらに対応する QBM の性質を明らかにすることがこの研

究の目的である。

CBM の平衡分布の全体は指数型分布族を成す。指数型分布族は統計学および情報幾何学

においてきわめて重要な概念であり、その量子版として量子指数型分布族というものを考え

ると、QBM の全体はその一例になる。また、QBM の全体は滑らかな多様体とみなせ、そこ

に CBM の場合と同様の情報幾何学的構造を導入することができる。これらの数学的枠組み

にもとづいて、まず、与えられた任意の状態を QBM で近似する問題を考察した。近似の規

範として相対エントロピーを用いるとき、CBM の場合と同様の性質および計算アルゴリズ

ムを導いた。ただし、CBM においては近似プロセスを学習問題（パラメータ推定）に適用す

ることができたが、QBM ではそのような直接的応用は見いだせなかった。また、学習と同

様に、CBM の持っていた確率的状態変化則に相当するダイナミクスも、QBM の場合にはそ

の対応物を見いだすことができなかった。ただし、強可分 QBM（strongly separable QBM,

略して SSQBM）という特殊なクラスでは、ギブス・サンプラーの考え方にもとづいて CBM

と同様の状態変化則を導入することができ、幾何学的にも SSQBM の成す多様体と CBM の

成す多様体は同等な構造を持つことを示した。

続いて、QBMに関する平均場近似を情報幾何学的観点から考察した。これらは、T. Tanaka

（田中利幸）によって示されていた CBM に関する結果の量子系への拡張と位置づけられる。

まず、QBM の成す多様体上の情報幾何構造にもとづいて e-射影と m-射影という二種類の射

影概念を定義し、それらを用いてナイーブ平均場近似の幾何学的意味を明らかにするととも

に、その条件を与える平均場方程式を陽に与えた。さらに、統計力学における Plefka 展開の

アイデアによるナイーブ平均場近似の精密化に関して考察を行った。特に、この精密化の本

質を情報幾何学的観点から明らかにするとともに、Plefka 展開の係数が計量や接続などの幾

何学的量によって表されることを示した。

ii



Information Geometrical

Study of

Quantum Boltzmann Machines

Nihal Yapage

Abstract

In this thesis, we consider quantum extension of the well-known stochastic neural

network model called (classical) Boltzmann machine (CBM) from an information

geometrical point of view. The new model is called quantum Boltzmann machine

(QBM). We investigate some properties and geometrical aspects of QBM analogous to

those of CBM. Furthermore, we study the mean-field approximation for such a model

from the information geometrical point of view. This is in some sense motivated by

the application of mean-field approximation for probabilistic inference in the graphical

models in the classical probability theory. Although the problem tackled in the present

thesis is somewhat deviated from the major field of quantum information theory, we

have elucidated the relationships among several well-known fields such as statistical

physics, differential geometry, information theory and statistics using the concepts of

the new emerging subject of quantum information geometry.

We first define QBMs which can be considered as a general class of quantum

Ising spin models. The states we consider are assumed to have at most second-

order interactions with arbitrary but deterministic coupling coefficients. We call such

a state a QBM for the reason that it can be regarded as a quantum extension of

the equilibrium distribution of CBM. The totality of QBMs is then shown to form

a quantum exponential family and thus can be considered as a smooth manifold

having similar geometrical structures to those of CBMs. The information geometrical

structure of the manifold of QBMs is discussed and the problem of approximating a

given quantum state (density operator) by a QBM is also treated.

We also define a restricted class of QBMs called the strongly separable QBMs

(SSQBMs). We consider the dynamics of SSQBMs and propose a new state renewal

rule based on that of CBM. The geometrical structure of the totality of SSQBMs is

shown to be equivalent to that of the totality of CBMs. Approximation process for

SSQBMs is also studied. Finally, we briefly discuss the parameter estimation of a

SSQBM.

Next, we study the mean-field approximation for QBMs from an information geo-

metrical point of view. We elaborate on the significance and usefulness of information

iii
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geometrical concepts, in particular the e-(exponential) and m-(mixture) projections,

in studying the naive mean-field approximation for QBMs and derive the naive mean-

field equation explicitly. We also discuss the higher-order corrections to the naive

mean-field approximation based on the idea of Plefka expansion in statistical physics.

We elucidate the geometrical essence of the corrections and provide the expansion

coefficients with expressions in terms of information geometrical quantities. Here,

one may note this work as the information geometrical interpretation of [Ple06] and

as the quantum extension of [Tan00].
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Chapter 1

Introduction

1.1 Overview

It is often both important and interesting to study the problems in the interface

of the fields such as physics, geometry, information theory, and statistics. This paves

the way to the advancement of such fields too. In this thesis, we study a similar

interdisciplinary problem which lies in the interface of such fields.

Information geometry as a new field has been found very useful in understanding

the deep mathematical structures in the interface of many fields [Ama85, AN00]. This

theory has been used in many situations to study the geometrical properties of the

space of parametrized probability distributions or quantum states.

On the other hand, the (classical) Boltzmann machine (CBM) [AHS85] is a well-

known stochastic neural network model. Physically, it can be viewed as a classical

spin system. The statistical aspects of CBM have been elucidated in [NK95]. The in-

formation geometrical structure of the space of CBMs has been discussed in [AKN92].

Stimulated by the above works, we find a possible quantum extension which cor-

respond to the equilibrium distribution of CBM and is called quantum Boltzmann

machine (QBM∗). We can consider QBM as a quantum spin system. Similar to

CBM, each QBM has two kinds of real-valued parameters, namely h, the thresholds

in neural network contexts and the external fields in physical contexts, and w, the

coupling coefficients (to be defined in Section 3.1). We remark that these parameters

are arbitrary but deterministic in our model, while the coupling coefficients are usu-

∗We note that QBM, at present, lacks any notions corresponding to the stochastic dynamics of
CBM which determine its equilibrium distribution. This means that our approach does not suggest
how to quantize the neural aspects of CBM.

1



1.1 Overview 2

ally considered to be random variables in case of spin glasses in physics. We study

the approximation process† for QBM similar to that of CBM.

We regard the set of QBMs parametrized by (h,w) as a quantum exponential fam-

ily, a smooth manifold which has a similar form to an exponential family in statistics,

on which a Riemannian metric and a couple of affine connections are naturally defined.

These differential geometrical structures turn out to have a characteristic property

called the dually flatness and are closely related to the quantum relative entropy (see

Chapter 4).

A restricted class of QBMs called the strongly separable QBMs (SSQBMs) is

defined. The totality of SSQBMs and that of CBMs are shown to be geometrically

equivalent. For SSQBMs, we define a state renewal rule based on that for CBM. The

approximation process is also discussed similarly.

As mentioned above, we view the QBM as a spin system with finite but large

number of spins connected in some way. When we are working with such multi-

particle systems with mutual interactions, the calculation of characteristic quantities

such as expectations and correlations of relevant observables with respect to the

density operator of the system is very important. This is, in general, computationally

a very time-consuming problem since the required time increases exponentially with

the number of elements in the system. One may find many obstacles due to the high

complexity and such problems are not easy to tackle with exact methods. Thus, it is

inevitable to employ an approximation method to get rid of this difficulty.

The so-called mean-field approximation was originated in statistical physics. The

basic idea of the mean-field approximation is to use a simple tractable family of

probability distributions (or density operators) to calculate characteristic quantities

with respect to a probability distribution (or a density operator) including mutual

interactions. It has been widely used both in classical and quantum physics as well

as in other fields such as information theory, statistics, etc. In particular, it has been

employed to get rid of the high computational cost in stochastic neural networks

like CBMs. Such approximations have been found indispensable also to the study of

probabilistic graphical models [JGJS99, OS01] in general where CBM is one example.

T. Tanaka [Tan96, Tan00] has studied the mean-field approximation for a general class

of classical Ising spin models, which are identified with the equilibrium distributions

of CBMs, from the viewpoint of information geometry; see also [BK00, AIS01] for

†The “approximation process” and the “mean-field approximation” considered in this thesis cor-
respond to m-projection and e-projection respectively and should clearly be distinguished from one
another



1.2 Summary of results 3

related works.

Motivated by the above works, we study the mean-field approximation for QBMs

from the viewpoint of quantum information geometry. Using the above mentioned

geometrical setup on the space of QBMs, we find the information geometrical in-

terpretation of mean-field approximation for QBMs. We elucidate the geometrical

essence of the naive mean-field approximation for the QBMs as well as the higher-

order extensions based on the idea of Plefka expansion in statistical physics.

1.2 Summary of results

In this section, we summarize the results obtained in this thesis. The results can

be divided into two main parts:

(1) A quantum extension of classical Boltzmann machine (CBM). The relevant

results are contained in Chapter 3 and Chapter 4

• Definition of quantum Boltzmann machine (QBM): Section 3.1.

• Definition of a restricted class of QBMs called strongly separable QBMs

(SSQBMs) and proposal of a state renewal rule based on that for CBM:

Section 3.2

• Information geometrical structure of the space of QBMs: Chapter 4.

• The approximation processes for QBMs and SSQBMs and the parameter

estimation of SSQBM are discussed in: Section 4.5

(2) Information geometry of mean-field approximation for QBMs. The relevant

results are contained in Chapter 5

• Derivation of naive mean-field equation for QBMs: Section 5.1

• Information geometrical understanding of higher-order approximations:

Section 5.2

The above mentioned results have been published in [YN05, YN06, YN08].

1.3 Organization of the thesis

The structure of this thesis is as follows. In the next chapter, we briefly review the

CBM including dynamics, approximation process and information geometrical inter-

pretation of mean-field approximation. We define QBM in Chapter 3 corresponding
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to the equilibrium distribution of CBM. Furthermore, we define a restricted class of

QBMs called SSQBMs. The information geometrical structure of the space of QBMs

is discussed in Chapter 4. We devote Chapter 5 to study the mean-field approxima-

tion for QBMs from an information geometrical point of view. Concluding remarks

and open problems are presented in Chapter 6.



Chapter 2

A review of (classical) Boltzmann

machine (CBM)

In this chapter, we briefly review the properties of the Boltzmann machine (which

we call CBM in this thesis) including the dynamics, approximation process and learn-

ing, elucidating the fact that the totality of CBMs forms an exponential family. Next,

we discuss the information geometrical interpretation of the mean-field approximation

for CBM following the formulation originally presented in [Tan00].

2.1 Definition, state renewal rule and some prop-

erties

A CBM [AHS85, AK89] can be considered as a network of n elements numbered

as 1, 2, . . . , n. Let the value of each element i ∈ {1, 2, . . . , n} be xi ∈ {−1, +1}. Then

a state of the CBM can be represented as x = (x1, x2, . . . , xn) ∈ {−1, +1}n. Each

element i ∈ {1, 2, . . . , n} carries a threshold value hi ∈ R. The CBM also has a

real-valued parameter wij for each pair of elements {i, j}, which is called the coupling

coefficient or weight between i and j. These parameters are assumed to satisfy con-

ditions wij = wji, wii = 0. When the CBM is in the state x = (x1, x2, . . . , xn), the

input to the element i from the other elements is defined by

Ii(x̂) =
n∑

j=1

wijxj + hi,

where x̂ = (x1, . . . , xi−1, xi+1, . . . , xn). The state renewal rule x → x′ = (x′
1, . . . , x

′
n)

of the CBM is as follows: we choose an element, say the element i, randomly and the

5



2.1 Definition, state renewal rule and some properties 6

value of the element is set to 1 according to the probability

Prob{x′
i := 1} =

1

1 + exp(−2Ii(x̂)/T )
, (2.1)

where the real-valued parameter T is called the temperature of the network.

Remark 1. In view of parametrization of probability distributions (or density op-

erators in the quantum setting), the temperature T is redundant. Therefore, in the

sequel, we assume T = 1.

During this state renewal process, the value of the elements j(6= i) does not change.

That means the state update of the CBM is sequential. This process defines a Markov

chain on the product set {−1, +1}n, whose equilibrium (stationary) distribution is

given by

ph,w(x) = exp
{∑

i

hixi +
∑
i<j

wijxixj − ψ(h,w)
}

, (2.2)

where

ψ(h,w) = log
∑

x

exp
{∑

i

hixi +
∑
i<j

wijxixj

}
.

Thus, noting that the correspondence ph,w ↔ (h, w) is one to one, we can, at least

mathematically, identify each CBM with its equilibrium probability distribution.

Remark 2. Neural network community usually considers xi ∈ {0, 1} while physicists

use xi ∈ {−1, +1}. Each can be replaced by the other without changing the essence

of the argument.

Many good properties of the CBM are consequences of the fact that the equilib-

rium distributions form an exponential family. Here, we discuss this important aspect

of the CBM [NK95] briefly. Let X be a finite set or, more generally, a measurable

space with an underlying measure dµ. We denote the set of positive probability dis-

tributions (probability mass functions for a finite X and probability density functions

for a general (X , dµ)) on X by P = P(X ). When a family of distributions, say

M = {pθ | θ = (θi); i = 1, . . . , n} ⊂ P , (2.3)

is represented in the form

pθ(x) = exp
{

c(x) +
n∑

i=1

θifi(x) − ψ(θ)
}

, x ∈ X , (2.4)
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M is called an exponential family. Here, θi; i = 1, . . . , n are real-valued parameters,

c and fi are functions on X and ψ(θ) is a real-valued convex function. Further, we

assume that the correspondence θ 7→ pθ is one to one. These θ = (θi) are called the

natural coordinates of M.

Now, for the exponential family M, if we let

ηi(θ)
def
= Eθ[fi] =

∑
x

pθ(x)fi(x)

then η = (ηi) and θ = (θi) are in one-to-one correspondence. That is, we can also

use η instead of θ to specify an element of M. These (ηi) are called the expectation

coordinates of M. The expectation coordinates are, in general, represented as

ηi = ∂iψ(θ)
(
∂i

def
=

∂

∂θi

)
. (2.5)

The set that consists of equilibrium probability distributions of Boltzmann ma-

chine (2.2) is one example of exponential family. In addition, threshold values and cou-

pling coefficients (weights) become the natural coordinates while Eθ[xi] and Eθ[xixj]

become expectation coordinates. The notion of exponential family is very important

in statistics and information geometry, and is also useful in studying properties of

CBMs with their mean-field approximations.

Let us now consider a hierarchy of exponential families and show that the totality

of CBMs is included in it. Let P = P({−1, +1}n). For k ∈ {1, . . . , n}, let Pk be the

set of probability distributions of the form

pθ(x) = exp
{∑

i

θ
(1)
i xi +

∑
i<j

θ
(2)
ij xixj + · · · +

∑
i1<···<ik

θ
(k)
i1...ik

xi1 · · · xik − ψ(θ)
}

= exp
{ k∑

j=1

∑
i1<···<ij

θ
(j)
i1...ij

xi1 · · · xij − ψ(θ)
}

(2.6)

with

ψ(θ) = log
∑

x

exp
{ k∑

j=1

∑
i1<···<ij

θ
(j)
i1...ij

xi1 · · · xij

}
, (2.7)

where x = (x1, . . . , xn) ∈ {−1, +1}n. Then Pk also turns out to be an exponential

family of dimension
∑k

j=1 nCj. Thus, we have a hierarchical structure of exponential

families P1 ⊂ P2 ⊂ · · · ⊂ Pn = P . In particular, P1 and P2 can be represented by

P1 = {p1(x1) · · · pn(xn)} = {product distributions} and

P2 = {equilibrium distributions of CBM} (see (2.2))

respectively. Note also that P itself is an exponential family of dimension 2n − 1.
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2.2 Approximation process and learning

Suppose that we are given an exponential family M ⊂ P of the form (2.4) and an

arbitrary probability distribution q ∈ P outside M. Let us consider the problem of

approximating q by an element pθ ∈ M. We adopt the Kullback-Leibler information

divergence

D(q‖pθ)
def
=

∑
x

q(x) log
q(x)

pθ(x)
(2.8)

as the criterion of approximation. Our interest is to find θ which minimizes D(q‖pθ),

that is, arg minθ D(q‖pθ). Geometrically, this can be understood as the m-projection

defined in Subsection 2.3.2. Then, it is shown that

θ∗ = arg min
θ

D(q‖pθ) ⇐⇒ ηi(θ
∗) = Eq[fi], ∀i, (2.9)

where Eq denotes the expectation with respect to the probability distribution q. Ac-

tually, for any θ, we have

D(q‖pθ) = D(q‖pθ∗) + D(pθ∗‖pθ),

which is an example of the Pythagorean relation for D.

When a sequence of data x(1), . . . , x(N) is given, the approximation

min
θ

D(q̂‖pθ)

of the empirical distribution

q̂ =
1

N

N∑
t=1

δx(t)

(where δx denotes the probability distribution satisfying δx(x) = 1) can be regarded

as a process of learning from the data. In particular, when the data x(1), . . . , x(N)

are assumed to be drawn from an unknown distribution in M, the learning turns out

to be the maximum likelihood estimation (MLE).

An algorithm for computing this approximation is the gradient method. In this

method, we assume that a positive-definite symmetric matrix [γij(θ)] ∈ Rn×n is spec-

ified for each point θ ∈ Rn, and a small positive constant ε is given in advance.

Then, starting from an arbitrary initial value θ, this process recurrently updates θ for

sufficiently many times according to

∆θi def
= −ε

∑
j

γij(θ)∂jD(q‖pθ), (2.10)

= ε
∑

j

γij(θ){Eq[fj] − ηj(θ)}, (2.11)



2.2 Approximation process and learning 9

θi def
= θi + ∆θi,

until ||∆θ|| becomes sufficiently small, which implies the convergence of pθ to pθ∗ .

Here, taking the value of ε smaller, the accuracy of approximation becomes better

but by that much the rate of convergence becomes slower.

As a special case of this method, we obtain the learning algorithm for the CBM

proposed by Ackley et al. in [AHS85]. They showed that, setting the initial value

P

p(h,w)

M = P2

q

Figure 2.1: Approximation process for CBM.

of θ = {hi, wij} arbitrarily and going recursively updating this according to the

following equations, θ which minimizes D(q‖pθ) can be found approximately after

sufficient number of updates:

∆hi
def
= ε

(∑
x

xiq(x) −
∑

x

xipθ(x)

)
(2.12)

= ε

(
Eq[xi] − Eθ[xi]

)
∆wij

def
= ε

(∑
x

xixjq(x) −
∑

x

xixjpθ(x)

)
(2.13)

= ε

(
Eq[xixj] − Eθ[xixj]

)
and

hi
def
= hi + ∆hi

wij
def
= wij + ∆wij,

where Eq[·] and Eθ[·] represent the expectation values with respect to q and pθ respec-

tively. Equations (2.12) and (2.13) are nothing but (2.11) applied to M = P2 with
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[γij(θ)] = [δij] (the Kronecker delta). On the other hand, a geometrically natural

choice of [γij(θ)] is [gij(θ)], which is the Fisher information matrix

gij(θ)
def
= Eθ[∂

i log pθ ∂j log pθ], ∂i =
∂

∂ηi

(2.14)

for (ηi) or, equivalently is the inverse of the Fisher information matrix

gij(θ) = Eθ[∂i log pθ ∂j log pθ] (2.15)

for (θi) [AKN92]. This is an example of the so-called natural gradient method [Ama98].

2.3 Mean-field approximation for CBMs

In this section, first we give a brief introduction to the mean-field approximation

in statistical physics. Then we discuss some important points of the information

geometrical aspects of the mean-field approximation including both naive and higher-

order approximations for CBMs following [Tan00, AIS01]. We also briefly describe

the information geometrical viewpoint of the so-called Plefka expansion.

2.3.1 Introduction to mean-field approximation

Mean-field theory, dating back to Curie, Weiss and Ginzburg-Landau, is one of

the most common approaches to the study of complex physical systems. The basic

underlying idea is that the complicated interactions that each element of a complex

system is subjected to by its neighbors can be replaced by the interaction with an

effective (or mean) field. While mean-field approximation arose primarily in the field

of statistical mechanics, it provides an alternative perspective on the probabilistic

inference problem. For instance, it has more recently been applied for doing inference

in graphical models in artificial intelligence [JGJS99].

In magnetic materials the microscopic state of the system is supposed to be defined

by the values of local spin magnetizations. In many magnetic materials the electrons

responsible for the magnetic behavior are localized near the atoms of the crystal

lattice, and the force which tends to orient the spins is the (short range) exchange

interaction.

The most popular models, which describe this situation qualitatively are called

the Ising models. The microscopic variables in these systems are the Ising spins xi

which by definition can take only two values -1 or +1. The microscopic energy or the
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Hamiltonian H as a function of all the Ising spins is given by

H = −
∑
i<j

Jijxixj − h
∑

i

xi, (2.16)

where Jij are the values of the spin-spin interactions and h is the external magnetic

field. In particular, physicists usually consider nearest neighbor models for example,

the ferromagnetic Ising model with Jij > 0 and the anti-ferromagnetic Ising model

with Jij < 0. It is a well-known fact that in statistical physics, the thermal equilibrium

state of a system is given by the Boltzmann distribution

P (x) =
1

Z
exp

(
−H(x)

T

)
, (2.17)

where T is the temperature∗ and

Z =
∑

x

exp
(
−H(x)

T

)
is a normalizing factor called the partition function. In spite of the apparent simplicity

of the Ising model, an exact solution (which means the calculation of the partition

function Z, expectations and the correlation functions) for the lattice system has

been found only for the one- and the two-dimensional cases in the zero external

magnetic field. In the higher dimensions one needs to use approximate methods.

One of the simplest methods is called the mean-field approximation (see for example

Figure 2.2: Mean-field approximation

[PA87, HKP91] for application to neural networks). In many, but not all, cases this

method gives the results which are not too far from the correct ones, and very often

∗As mentioned in Section 2.1, in the sequel, we assume T = 1.
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it makes possible to get some qualitative understanding of what is going on in the

system under consideration. The starting point of the mean-field approximation is

the fact that the joint distribution function of the non-interacting system can be

factorized as the product of the independent distribution functions in the individual

sites of the spin system.

2.3.2 Naive and higher-order mean-field approximations for

CBMs

In this subsection, we derive the naive mean-field equation and discuss briefly

the higher-order approximations based on the Plefka expansion from an information

geometrical point of view. The complete description of the information geometrical

interpretation of Plefka expansion is presented in the Chapter 5 for the quantum

setting.

Let us now recall P2, the manifold of CBMs. Here, we treat the case that each

element is subjected to different external magnetic fields (in the physical interpreta-

tion) hi which were considered equal to h in (2.16). Suppose that we are interested in

obtaining expectations mi with respect to a probability distribution in P2. However,

when the system size is large, the partition function exp(ψ(h,w)) is very difficult to

calculate and thus explicit calculation of the expectations mi is intractable. There-

fore, due to that difficulty, we are led to obtain a good approximation of mi for a

given probability distribution ph,w ∈ P2.

First, we consider the subspace P1 of P2. We parametrize each distribution in P1

by h̄ in order to distinguish from the parametrization in (2.2) and write as

ph̄(x) = exp
{ ∑

i

h̄ixi − ψ(h̄)
}

, (2.18)

where

ψ(h̄) =
∑

i

log
{

exp(h̄i) + exp(−h̄i)
}

.

Then, P1 forms a submanifold of P2 specified by wij = 0 and h̄i as its coordinates.

The expectations m̄i := Eh̄[xi] form another coordinate system of P1. For a given

ph̄ ∈ P1, it is easy to obtain m̄i = Eh̄[xi] from h̄i because xi’s are independent. We

can calculate m̄i to be

m̄i =
∂ψ(h̄)

∂h̄i

=
exp(h̄i) − exp(−h̄i)

exp(h̄i) + exp(−h̄i)
= tanh(h̄i), (2.19)
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from which we obtain

h̄i =
1

2
log

(
1 + m̄i

1 − m̄i

)
. (2.20)

The simple idea behind the mean field approximation for a ph,w ∈ P2 is to use

quantities obtained in the form of expectation with respect to some relevant ph̄ ∈ P1.

Now, we need a suitable criterion to measure the approximation of two probability

distributions. For the present purpose, we adopt the Kullback-Leibler divergence

(2.8). Given ph,w ∈ P2, its e-(exponential) and m-(mixture) projections (see [AN00])

onto P1 are defined by

p̄(e) = ph̄(e)
def
= arg min

ph̄∈P1

D(ph̄‖ph,w) (2.21)

and

p̄(m) = ph̄(m)
def
= arg min

ph̄∈P1

D(ph,w‖ph̄) (2.22)

respectively, where

h̄(e) = arg min
h̄=(h̄i)

D(ph̄‖ph,w) (2.23)

and

h̄(m) = arg min
h̄=(h̄i)

D(ph,w‖ph̄). (2.24)

As necessary conditions, we have

∂

∂h̄i

D(ph̄‖ph,w) = 0 (2.25)

and
∂

∂h̄i

D(ph,w‖ph̄) = 0, (2.26)

which are weaker than (2.23) and (2.24). But sometimes (2.25) and (2.26) are chosen

to be the definitions of e-, m- projections respectively for convenience. It can be shown

that the m-projection p̄(m) gives the true values of expectations, that is mi = m̄i or

E(h,w)[xi] = Eh̄[xi] for ph̄ = p̄(m) (see (2.9)). It should be noted that the approximation

process in Section 2.2 can be considered as the m-projection from P onto P2. On

the other hand, the e-projection p̄(e) from P2 onto P1 gives the naive mean-field

approximation (see [Tan00]) which is explicitly given by

m̄i = tanh
( ∑

j

wijm̄j + hi

)
, (2.27)
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where m̄i = Eh̄[xi] for ph̄ = p̄(e). From (2.27) and (2.19), it is clear that in the

mean-field approximation the effective fields of other elements j(6= i) are replaced by

external fields called mean fields (see Figure 2.2).

Now we derive the naive mean-field equation for CBM. Recall that the equilibrium

distribution for CBM (2.2) is given by

p
def
= ph,w(x) = exp

{∑
i

hixi +
∑
i<j

wijxixj − ψ(h,w)
}

, (2.28)

where

ψ(p)
def
= ψ(h,w) = log

∑
x

exp
{∑

i

hixi +
∑
i<j

wijxixj

}
.

Now we define another function

φ(p) = φ(h,w)
def
=

∑
i<j

wij Ep[xixj] +
∑

i

hi Ep[xi] − ψ(p), (2.29)

which coincides with the negative entropy:

φ(p) =
∑

x

p(x) log p(x). (2.30)

In particular, for a product distribution ph̄ ∈ P1, using Eh̄[xi] = m̄i , we have

φ(ph̄) =
∑

i

[(
1 + m̄i

2

)
log

(
1 + m̄i

2

)
+

(
1 − m̄i

2

)
log

(
1 − m̄i

2

)]
. (2.31)

The KL divergence between p ∈ P2 and ph̄ ∈ P1 can be expressed in the following

form:

D(ph̄‖p) = ψ(p) + φ(ph̄) −
∑
i<j

wij Eh̄[xixj] −
∑

i

hi Eh̄[xi]

= ψ(p) + φ(ph̄) −
∑
i<j

wijm̄im̄j −
∑

i

him̄i.

= ψ(p) +
1

2

∑
i

[
(1 + m̄i) log

(
1 + m̄i

2

)
+ (1 − m̄i) log

(
1 − m̄i

2

)]
−

∑
i<j

wijm̄im̄j −
∑

i

him̄i. (2.32)

Now consider the e-projection (2.25) from p ∈ P2 onto ph̄ ∈ P1, i.e.

∂

∂h̄i

D(ph̄‖p) = 0. (2.33)
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Noting that h̄ and m̄ are in one-to-one correspondence, we may consider instead

∂

∂m̄i

D(ph̄‖p) = 0. (2.34)

Since ψ(p) does not depend on m̄i, we obtain from (2.32) that

0 =
1

2
log

(
1 + m̄i

1 − m̄i

)
−

∑
j 6=i

wijm̄j − hi

= h̄i −
∑
j 6=i

wijm̄j − hi, (2.35)

where the second equality is from (2.20). Thus the naive mean-field equation is

obtained from (2.19) and (2.35) as

tanh−1(m̄i) =
∑
j 6=i

wijm̄j + hi (2.36)

and this is usually written in the form (2.27).

Let us briefly discuss the higher-order mean-field approximations for CBMs using

the information geometrical interpretation of the so-called Plefka expansion. Recall

that the elements of P2 are parametrized as ph,w by h = (hi) and w = (wij). This

means that (h,w) forms a coordinate system of the manifold P2. When P2 is viewed

as an exponential family, (h,w) turns out to be a natural coordinate system, while

the corresponding expectation coordinate system is given by (m, η) where m = (mi)

and η = (ηij) with mi = E(h,w)[xi]) and ηij = E(h,w)[xixj]) respectively. We now

define a third (or hybrid) coordinate system (m,w). The elements of P2 are then

parametrized by (m, w), which we denote by p̂m,w to avoid any confusion with ph,w.

Note that

P2 = {ph,w | (h,w) : free}
= {p̂m,w | (m,w) : free} (2.37)

and that

p̂m,w = ph,w ⇐⇒ ∀i, mi = E(h,w)[xi]. (2.38)

One may think of obtaining the expectations mi by solving the equation

∂

∂mi

D(p̂m,w‖ph,w) = 0. (2.39)

The difficulty in this approach is that it is hard to derive the stationary condition

explicitly because p̂m,w is complex enough so that we cannot obtain an explicit ex-

pression for D(p̂m,w‖ph,w) in terms of {mi}. On the other hand, when w = 0 in the
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first argument of D(p̂m,w‖ph,w), the equation (2.39) turns out to be

∂

∂mi

D(p̂m,0‖ph,w) = 0 (2.40)

which is nothing but the naive mean-field approximation discussed earlier.

The Plefka expansion was originally presented as a Taylor expansion of the Gibbs

potential [Ple82, Ple06]. The information geometrical interpretation of it is that to use

the Taylor expansion of the difference D(p̂m,0‖ph,w) − D(p̂m,w‖ph,w) up to a required

order of w to derive more precise approximations of {mi}. For the detailed discussion

of the information geometrical viewpoint of the Plefka expansion, see Chapter 5.

We mention, for example, the second-order mean-field equation

m̄i = tanh

(
hi +

∑
j 6=i

wijm̄j − m̄i

∑
j 6=i

w2
ij(1 − m̄2

j)

)
(2.41)

which was originally derived by a different method in [TAP77]. Some other higher-

order terms have been calculated in [NT97].



Chapter 3

A quantum extension of CBM

We present a possible quantum extension of CBM which is called the quantum

Boltzmann machine (QBM). Furthermore, a subfamily of the totality of QBMs is

defined which is called the set of strongly separable QBMs (SSQBMs). A state renewal

rule is proposed for these states based on that for CBM. Note that, in this thesis, we

use the concepts of density operator, quantum measurement etc. without explicitly

describing their physical meaning and the interested reader is referred, for example,

to [NC02].

3.1 Definition of quantum Boltzmann machine (QBM)

Let us consider an n-element system of quantum Ising spins. Each element is

represented as a quantum bit (qubit) or quantum spin-1
2

with local Hilbert space C2,

and the n-element system corresponds to H ≡ (C2)⊗n ' C2n
. Let S be the set of

faithful (strictly positive) states on H;

S = {ρ | ρ = ρ∗ > 0 and Tr ρ = 1}. (3.1)

Here, each ρ is a 2n × 2n matrix; ρ = ρ∗ > 0 means that ρ is Hermitian and strictly

positive or positive definite respectively; and Tr ρ = 1 shows that the trace of the

density matrix ρ is unity. Now corresponding to (2.6), an element of S is said to have

at most kth-order interactions if it is written as

ρθ = exp
{∑

i,s

θ
(1)
is Xis +

∑
i<j

∑
s,t

θ
(2)
ijstXisXjt + · · ·

+
∑

i1<···<ik

∑
s1...sk

θ
(k)
i1...iks1...sk

Xi1s1 · · ·Xiksk
− ψ(θ)

}
17
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= exp
{ k∑

j=1

∑
i1<···<ij

∑
s1...sj

θ
(j)
i1...ijs1...sj

Xi1s1 · · ·Xijsj
− ψ(θ)

}
(3.2)

with

ψ(θ) = log Tr exp
{ k∑

j=1

∑
i1<···<ij

∑
s1...sj

θ
(j)
i1...ijs1...sj

Xi1s1 · · ·Xijsj

}
, (3.3)

where Xis = I⊗(i−1) ⊗ Xs ⊗ I⊗(n−i), θ = (θ
(j)
i1...ijs1...sj

). Here, I is the identity matrix

on H and Xs for s ∈ {1, 2, 3} are the usual Pauli matrices given by

X1 =

(
0 1

1 0

)
, X2 =

(
0 −i

i 0

)
, X3 =

(
1 0

0 −1

)
.

Letting Sk be the totality of states ρθ of the above form, we have the hierarchy

S1 ⊂ S2 ⊂ · · · ⊂ Sn = S. Note that S1 is the set of product states ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

Our main concern in the present chapter is S2. In the sequel, we let his = θ
(1)
is and

wijst = θ
(2)
ijst to rewrite (3.2) for k = 2 as

ρh,w = exp
{∑

i,s

hisXis +
∑
i<j

∑
s,t

wijstXisXjt − ψ(h,w)
}

, (3.4)

where h = (his), w = (wijst). The real dimension of S2 is 3n(3n − 1)/2 which gives

the number of parameters to specify a density operator ρh,w.

Corresponding to the classical case, an element of S2 of the form (3.4) is called

a quantum Boltzmann machine or a QBM in this thesis (see also [YN05, YN06]),

although we have no quantum dynamics corresponding to the stochastic state change

of a CBM at present. Physically, a QBM simply means a general quantum state for

n-fold spins with at most second-order interactions which are arbitrary and determin-

istic, not random as in a spin glass.

Now, here we briefly discuss the set S1 for later use. The elements of S1 are

represented as ρh,0 by letting w = 0 in (3.4). In the sequel, we write them as

τh̄ = exp
{ ∑

i,s

h̄isXis − ψ(h̄)
}

(3.5)

by using new symbols τ and h̄ = (h̄is) when we wish to make it clear that we are

treating S1 instead of S2. We have

τh̄ =
n⊗

i=1

exp
{∑

s

h̄isXs − ψi(h̄i)
}

, (3.6)
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where h̄i = (h̄is)s and

ψi(h̄i) = log Tr exp
{∑

s

hisXs

}
= log{exp(||h̄i||) + exp(−||h̄i||)} (3.7)

with ||h̄i||
def
=

√∑
s(h̄is)2. Note that

ψ(h̄) =
∑

i

ψi(h̄i). (3.8)

3.2 Strongly separable QBM (SSQBM)

3.2.1 Separability criterion and a state renewal rule

First, we review the state renewal process of the CBM. In Chapter 2, Section 2.1,

we mentioned that the probability distribution (2.2) is obtained as the equilibrium

distribution for the stochastic state renewal rule (2.1). The significance of this process

is its locality. That is, the random generation of data is simple and carried out by

each element based on the data sent from the other elements. The mathematical

essence of (2.1) is that it is the conditional distribution defined from (2.2). That is,

1

1 + exp(−2Ii(x̂))
=

P (x1, . . . , xi = 1, . . . , xn)∑
x′

i
P (x1, . . . , x′

i, . . . , xn)

= P (xi = 1 | x1, . . . , xi−1, xi+1, . . . , xn).

This method to generate a random sequence X1, X2, . . . , Xn subject to P (x1, . . . , xn)

by the use of conditional distributions is generally called the Gibbs sampler (see

[GG84]) in classical mathematical statistics. The same idea is applied to a limited

class of QBMs.

Separability is a well-known concept in quantum information theory. For a state

ρ on the Hilbert space H = (C2)⊗n, it is called separable if there exist {λi}m
i=1 ⊂ [0, 1]

and {τ (j)
i }1≤i≤m,1≤j≤n ⊂ S(C2), such that

∑m
i=1 λi = 1 and

ρ =
m∑

i=1

λi τ
(1)
i ⊗ · · · ⊗ τ

(n)
i . (3.9)

Separability is equivalent to the existence of finite sets X1, . . . ,Xn, a probability distri-

bution P = P (x1, . . . , xn) on X1 × · · · ×Xn and {τ (i)
xi | xi ∈ Xi} ⊂ S(C2), i = 1, · · · , n,

such that

ρ =
∑

x

P (x)τx, (3.10)
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where x = (x1, . . . , xn) and τx = τ
(1)
x1 ⊗ · · · ⊗ τ

(n)
xn .

We can apply the method of Gibbs sampler to generate ρ in the form (3.10) as

follows:

State renewal rule:

(i) Choose i randomly.

(ii) Update xi ∈ Xi according to P (xi | x1, . . . , xi−1, xi+1, . . . , xn).

(iii) Set the state of i to τ
(i)
xi .

It is obvious that, according to the Gibbs sampler, the state converges to ρ by re-

peating this process for sufficiently many times.

3.2.2 Strongly separable states and SSQBM

Definition 1. A separable state ρ of the form (3.10) is called strongly separable if

[τ (i)
xi

, τ
(i)

x′
i
] = 0 ∀i, xi, x

′
i ∈ Xi. (3.11)

This is equivalent to the existence of U = {u1, . . . , un}, where each ui is a unit

vector in R3, and a probability distribution P on {−1, +1}n such that

ρ =
∑

x1,...,xn

P (x1, . . . , xn)πu1
x1

⊗ · · · ⊗ πun
xn

, (3.12)

where for any u = (u1, u2, u3) we define

πu
1 =

1

2

[
1 + u3 u1 − iu2

u1 + iu2 1 − u3

]
=

1

2
(I + u1X1 + u2X2 + u3X3)

πu
−1 = π−u

1 = I − πu
1 .

Note that πu = (πu
1 , πu

−1) represents a projective measurement (projection-valued

measure, PVM) where πu
1 and πu

−1 are mutually orthogonal projection operators sat-

isfying πu
1 + πu

−1 = I. For a spin-1
2

particle, this PVM can be physically realized by

a Stern-Gerlach measurement of direction u. We call U = {ui} a frame of a strongly

separable state ρ.

Combination of steps (ii) and (iii) in the state renewal algorithm is equivalent to

setting the quantum state of ith element to

τ (i) = P (1 | x̂)πui
1 + P (−1 | x̂)πui

−1

= Tr(i)[ρ′
x̂],
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where (x̂ = (x1, . . . , x̂i, . . . , xn)), Tr(i) is the partial trace over n − 1 qubit systems

except for ith system,

ρ′
x̂

def
=

π̃x̂ρπ̃x̂

Tr[π̃x̂ρπ̃x̂]

and π̃x̂ = πu1
x1

⊗ · · · ⊗ I ⊗ · · · ⊗ πun
xn

where I is in the ith position. Note that ρ′
x̂ is the

post measurement state of the target state ρ for the measurement results x̂.

Next theorem gives the necessary and sufficient conditions for a state of the form

(3.2) to be strongly separable.

Theorem 1. A state ρ represented in the form (3.2) in terms of the parameters

(θ
(j)
i1...ijs1...sj

) is strongly separable with frame U = {ui} iff there exists (θ
(j)′
i1...ij

) such

that ∀j,∀i1 < · · · < ∀ij,∀s1, . . . , ∀sj,

θ
(j)
i1...ijs1...sj

= θ
(j)′
i1...ij

ui1s1 · · · uijsj
, (3.13)

where ui = (ui1, ui2, ui3).

Proof. First assume that (3.13) holds. Substituting, (3.13) to (3.2), we have

ρ = exp

[ k∑
j=1

∑
i1<···<ij

∑
s1...sj

θ
(j)
i1...ijs1...sj

Xi1s1 . . . Xijsj
− ψ(θ)

]
(3.14)

= exp

[ k∑
j=1

∑
i1<···<ij

θ
(j)′
i1···ijXi1ui1

. . . Xijuij
− ψ(θ)

]
, (3.15)

where for any i and u = (us)
3
s=1 we define

Xiu
def
=

∑
s

usXis

= I ⊗ · · · ⊗
(∑

s

usXs

)
⊗ · · · ⊗ I

= I ⊗ · · · ⊗ Xu ⊗ · · · ⊗ I

with Xu
def
=

∑
s usXs = πu

1 − πu
−1. Now, let for x = (x1, . . . , xn) ∈ {−1, +1}n,

f(x) =
k∑

j=1

∑
i1<···<ij

θ
(j)′
i1,...,ij

xi1 . . . xij . (3.16)

Then∑
x

f(x)πu1
x1

⊗ · · · ⊗ πun
xn

=
k∑

j=1

∑
i1<···<ij

θ
(j)′
i1,··· ,ij

∑
x

xi1 · · · xijπ
u1
x1

⊗ · · · ⊗ πun
xn

=
k∑

j=1

∑
i1<···<ij

θ
(j)′
i1...ij

Xi1ui1
. . . Xijuij

. (3.17)
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Therefore, from (3.15) and (3.17)

ρ = exp

[∑
x

f(x)πu1
x1

⊗ · · · ⊗ πun
xn

− ψ(θ)

]
= exp

[∑
x

{
f(x) − ψ(θ)

}
πu1

x1
⊗ · · · ⊗ πun

xn

]
=

∑
x

exp
[
f(x) − ψ(θ)

]
πu1

x1
⊗ · · · ⊗ πun

xn

=
∑

x

P (x)πu1
x1

⊗ · · · ⊗ πun
xn

, (3.18)

where

P (x) = exp
[
f(x) − ψ(θ)

]
= exp

[ k∑
j=1

∑
i1,...,ij

θ
(j)′
i1<···<ij

xi1 . . . xij − ψ(θ)

]
. (3.19)

Therefore ρ is strongly separable with frame U . Conversely, let us assume that ρ of the

form (3.2) is strongly separable with frame U . Then, by definition, ρ is represented as

(3.12) by a probability distribution P on {−1, +1}n. Since ρ is assumed to be faithful,

P (x) is positive for all x, and therefore P can be represented as (3.19) with k = n for

some θ′ = (θ
(j)′
i1,...,ij

). Then, tracing back the previous argument in the reverse order,

we have

ρ =
∑

x

P (x)πu1
x1

⊗ · · · ⊗ πun
xn

= exp

[∑
x

n∑
j=1

∑
i1<···<ij

θ
(j)′
i1...ij

xi1 . . . xijπ
u1
x1

. . . πun
xn

− ψ(θ)

]

= exp

[ n∑
j=1

∑
i1<···<ij

θ
(j)′
i1...ij

Xi1ui1
. . . Xijuij

− ψ(θ)

]

= exp

[ n∑
j=1

∑
i1<···<ij

∑
s1,··· ,sj

θ
(j)′
i1...ij

ui1s1 . . . uijsj
Xi1s1 . . . Xijsj

− ψ(θ)

]
. (3.20)

Comparing (3.20) with (3.14), we have

θ
(j)
i1...ijs1...sj

= θ
(j)′
i1...ij

ui1s1 . . . uijsj
(1 ≤ ∀j ≤ k)

and

θ
(j)′
i1...ij

= 0 if j > k.

which establishes the result.
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Let us now define S ′(U) as the set of strongly separable states ρ ∈ S with frame

U and S ′
k(U)

def
= S ′(U) ∩ Sk. Then we define the elements of the S ′

2(U) to be the

SSQBMs. First, we give a corollary of Theorem 1.

Corollary 1. A QBM ρθ, θ = (his, wijst), of the form (3.4) is strongly separable with

frame U = {ui} iff there exists θ′ = (h′
i, w

′
ij) such that ∀i, j, ∀s, t,

his = h′
iuis, wijst = w′

ijuisujt, (3.21)

with ui = (ui1, ui2, ui3), which means that ρθ is represented as (3.12) with

P (x1, . . . , xn) = exp
{∑

i

h′
ixi +

∑
i<j

w′
ijxixj − ψ(h′, w′)

}
. (3.22)

In particular, if hi 6= 0,∀i, the necessary and sufficient condition for a QBM ρθ to be

strongly separable (with some frame) is that

∀i, j, Wij ∝ hih
T
j , (3.23)

where

hi =

hi1

hi2

hi3

 , Wij =

wij11 wij12 wij13

wij21 wij22 wij23

wij31 wij32 wij33

 .

and T denotes the matrix transpose.

Proof. Obvious from the Theorem 1.

Next, we give a state renewal rule for the SSQBM in the following theorem.

Theorem 2. When the target state of a SSQBM is represented by (3.4) and (3.21),

the state renewal rule in Subsection 3.2.1 is carried out, starting from an arbitrary

initial state ρ ∈ S and arbitrary initial data x = (x1, . . . , xn) ∈ {−1, +1}n, by the

following procedure.

(i) Choose i randomly.

(ii) Using data x̂ = (x1, . . . , xi−1, xi+1, . . . , xn) available at the time, renew the state

of the ith element to

σi =
1

2
(I +

3∑
s=1

visXs) (3.24)

with

vi = (vi1, vi2, vi3) = tanh

(∑
j

w′
ijxj + h′

i

)
ui.
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(iii) Perform the measurement πui = {πui
1 , πui

−1} to the ith element and update xi by

the measurement outcome.

Proof. For a SSQBM, the steps (ii) and (iii) of the state renewal rule in Subsec-

tion 3.2.1 and the following steps (ii)′ and (iii)′ are same:

(ii)′ Update xi according to

xi :=

1 with probability 1
1+exp(−2Ii(x̂))

=: λ,

−1 with probability 1 − λ.
(3.25)

(iii)′ Set the state of the ith element to πui
1 if xi = 1 or to πui

−1 if xi = −1.

On the other hand, for the state renewal rule in the statement of the theorem, we can

show by some calculations that the updated state is represented as (see Figure 3.1)

σi = λπui
1 + (1 − λ)πui

−1. (3.26)

Noting that, according to the von Neumann postulate for the projective measurement

πui = {πui
1 , πui

−1}, the post measurement state πui
xi

(∝ πui
xi

σiπ
ui
xi

) depending on the

measurement result xi, we see the equivalence of (ii)′ and (iii)′ to (ii) and (iii) of the

present state renewal rule.

1

2

3

n

i

x1

x2
x3

xnπu1

πu2

πu3

πun

σi = λπui
1 + (1 − λ)πui

−1

Figure 3.1: State transition process for SSQBM



Chapter 4

Geometry of quantum exponential

family and the space of QBMs

This chapter presents a discussion on the information geometrical structure of

the space of QBMs. First we introduce a quantum exponential family and discuss

its geometrical structure in general. Then it is shown that the space of QBMs can

be understood as one family in a hierarchical structure of exponential families. Fur-

thermore, the present chapter discusses the approximation processes for QBMs and

SSQBMs. Finally, we study the parameter estimation of SSQBM.

4.1 Quantum exponential families

We introduce a quantum version of exponential family (2.4) in the following. Let

H be a finite dimensional Hilbert space and denote the totality of faithful states on

H by

S = {ρ | ρ = ρ∗ > 0 and Tr ρ = 1}.

Suppose that a parametric family

M = {ρθ | θ = (θi); i = 1, . . . ,m} ⊂ S (4.1)

is represented in the form

ρθ = exp
{

C +
m∑

i=1

θiFi − ψ(θ)
}

, (4.2)

where Fi (i = 1, . . . ,m), C are Hermitian operators and ψ(θ) is a real-valued function.

We assume in addition that the operators {F1, . . . , Fm, I}, where I is the identity

25
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operator, are linearly independent to ensure that the parametrization θ 7→ ρθ is one

to one. Then M forms an m-dimensional smooth manifold with a coordinate system

θ = (θi). In this thesis, we call such an M a quantum exponential family∗, or QEF

for short, with natural (or canonical) coordinates θ = (θi). It is easy to see that S is

a QEF of dimension (dimH)2 − 1. Note also that for any 1 ≤ k ≤ n the set Sk of

states (3.2) forms a QEF, including S2 of QBMs and S1 of product states.

If we let

ηi(θ)
def
= Tr

[
ρθFi

]
, (4.3)

then η = (ηi) and θ = (θi) are in one-to-one correspondence. That is, we can also

use η instead of θ to specify an element of M. These (ηi) are called the expectation

coordinates of M.

In particular, the natural coordinates of S2 are given by (h,w) = (his, wijst) in

(3.4), while the expectation coordinates are (m,µ) = (mis, µijst) defined by

mis = Tr[ρh,w Xis] and µijst = Tr[ρh,w XisXjt]. (4.4)

On the other hand, the natural coordinates of S1 are h̄ = (h̄is) in (3.5), while the

expectation coordinates are m̄ = (m̄is) defined by

m̄is = Tr[τh̄Xis]. (4.5)

In this case, the correspondence between the two coordinate systems can explicitly

be represented as

m̄is =
∂ψi(h̄i)

∂h̄is

=
h̄is

||h̄i||
tanh(||h̄i||) (4.6)

or as

h̄is =
m̄is

||m̄i||
tanh−1(||m̄i||), (4.7)

where ||m̄i||
def
=

√∑
s(m̄is)2.

4.2 A metric and affine connections

In classical information geometry (see [AN00]), a Riemannian metric, called the

Fisher metric, and a one-parameter family of affine connections, called the α-connections
∗It should be noted, however, (4.2) is merely one of the possible definitions of quantum exponential

family. Our definition has the advantage that it is closely related to the quantum relative entropy
(4.25) and is completely analogous to the classical exponential family from a purely geometrical point
of view. On the other hand, it does not well fit to the framework of quantum estimation theory,
which needs another definition of QEF such as the one based on symmetric logarithmic derivatives
(see Section 7.4 of [AN00]).
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(α ∈ R), are canonically defined on an arbitrary manifold of probability distributions.

In particular, the (α = 1)-connection and the (α = −1)-connection, which are also

called the e-connection and m-connection respectively, together with the Fisher met-

ric have been shown very useful in many problems in statistics and other fields. In the

quantum case, on the other hand, we have infinitely many mathematical equivalents

of the Fisher metric and the α-connections including the e- and m-connections defined

on a manifold of quantum states. We introduce, in the present Section, an example of

quantum Fisher metric and e-, m-connections, and describe their properties, mainly

following [AN00]. Our choice of information geometrical structure has the advantage

that it is naturally linked with QEF and quantum relative entropy. For general terms

of differential geometry such as manifold, Riemannian metric and affine connection,

refer, for example, to [KN63].

Let H be a finite dimensional Hilbert space. We consider a d-dimensional para-

metric family

M = {ρθ | θ = (θ1, . . . , θd) ∈ Θ}, Θ ⊂ Rd

of faithful states on H. Then, θ = (θi); i = 1, . . . , d can be considered as a coordinate

system and M becomes a submanifold of the manifold of faithful states S on H. In

the following, we discuss the information geometrical structure of M including the

case M = S. As a first step, a Riemannian metric g = [gij] is defined on M by

gij(θ) = g(∂i, ∂j), where ∂i
def
=

∂

∂θi

=

∫ 1

0

Tr
[
ρλ

θ (∂i log ρθ)ρ
1−λ
θ (∂j log ρθ)

]
dλ (4.8)

= Tr[(∂iρθ)(∂j log ρθ)].

This is a quantum version of the Fisher information metric and is called the BKM

(Bogoliubov-Kubo-Mori) metric. Next, two torsion-free affine connections, the expo-

nential connection (or e-connection for short) ∇(e) and the mixture connection (or

m-connection for short) ∇(m), are defined on M as follows:

Γ
(e)
ij,k(θ)

def
= g(∇(e)

∂i
∂j, ∂k) = Tr[(∂i∂j log ρθ)(∂kρθ)] (4.9)

and

Γ
(m)
ij,k(θ)

def
= g(∇(m)

∂i
∂j, ∂k) = Tr[(∂i∂jρθ)(∂k log ρθ)], (4.10)

where g is the BKM metric. Note that both ∇(e) and ∇(m) are mappings (covariant

derivatives) which map two vector fields X,Y to ∇(e)
X Y and to ∇(m)

X Y respectively.
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The coefficients Γ
(e)
ij,k give a coordinate representation of the connection ∇(e) relative

to the metric g, while Γ
(e)k
ij defined by

∇(e)
∂i

∂j =
∑

k

Γ
(e)k
ij ∂k (4.11)

purely represent ∇(e). They are related to each other by

Γ
(e)
ij,k =

∑
l

Γ
(e)l
ij gkl.

Similarly, we have Γ
(m)k
ij for ∇(m) such that

∇(m)
∂i

∂j =
∑

k

Γ
(m)k
ij ∂k (4.12)

and

Γ
(m)
ij,k =

∑
l

Γ
(m)l
ij gkl.

These two connections ∇(e) and ∇(m) are dual with respect to the BKM metric

(4.8) in the sense that, for any vector fields X,Y, Z,

Xg(Y, Z) = g(∇(e)
X Y, Z) + g(Y,∇(m)

X Z), (4.13)

or equivalently in the component form

∂igjk = Γ
(e)
ij,k + Γ

(m)
ik,j. (4.14)

This kind of duality for affine connections plays a key role in classical and quantum

information geometry. Another notable relation between the two connections is

Γ
(m)
ij,k − Γ

(e)
ij,k = Tijk, (4.15)

where

Tijk(θ)
def
= 2 Re

∫∫
0≤ν≤λ≤1

Tr
[
ρν

θ(∂i log ρθ)ρ
λ−ν
θ (∂j log ρθ)ρ

1−λ
θ (∂k log ρθ)

]
dν dλ. (4.16)

4.3 Geometrical structure of the space of QBMs

We have shown in Section 4.1 that the totality of QBMs form a QEF. In this

section, we describe the geometrical structure of QEF including the space of QBMs.

Let us now consider the case when M is a QEF (4.2) with natural coordinates θ =
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(θi). It is then easy to check from (4.9) that the coefficients Γ
(e)
ij,k or Γ

(e)k
ij of the e-

connection are all zero. In the context of differential geometry, this means that M is

flat with respect to the connection ∇(e) (e-flat, for short) and θ = (θi) forms an affine

coordinate system for ∇(e) (e-affine coordinate system, for short). On the other hand,

the coefficients Γ
(m)
ij,k of the m-connection do not vanish with respect to the natural

coordinates θ = (θi). However, one of the remarkable consequences of the duality

(4.13) is that, if one of the two connections ∇(e) and ∇(m) is flat, then the other is

also flat, which is referred to as the dually flatness of the manifold with respect to the

information geometrical structure (g,∇(e),∇(m)). In the present case, the connection

coefficients of ∇(m) with respect to the expectation coordinates η = (ηi) defined by

(4.3) turns out to identically vanish. This means that M is m-flat with an m-affine

coordinate system (ηi). Moreover, we have

g

(
∂

∂θi
,

∂

∂ηj

)
= δj

i (= 1 if i = j, 0 otherwise) (4.17)

and

ηi =
∂ψ

∂θi
, θi =

∂φ

∂ηi

, (4.18)

where ψ given in (4.2), is regarded as a function M → R by ψ(ρθ) = ψ(θ), and

φ : M → R is defined by the relation

φ(ρ) + ψ(ρ) =
∑

i

ηi(ρ)θi(ρ), ∀ρ ∈ M. (4.19)

Note that equation (4.6) is an example of the first equation in (4.18). It can also be

shown that

φ(ρ) = −Tr[ρC] − S(ρ), (4.20)

where

S(ρ)
def
= −Tr[ρ log ρ] (4.21)

is the von Neumann entropy. In particular, for the QEF Sk of states (3.2), we have

C = 0 and hence φ(ρ) = −S(ρ). We note that the existence of m-affine coordinates

η = (ηi) and functions ψ, φ satisfying the relations (4.17), (4.18) and (4.19) is ensured

as a general property of dually flat space (see Theorem 3.6 in [AN00]), although it is

not difficult to directly verify these relations for a QEF (4.2).

Finally, let us rewrite (4.17) into a form which will be useful in later arguments.

Noting that (4.17) is written as

g

(
∂

∂θi
,

∂

∂ηj

)
=

∂ηi

∂ηj

(4.22)
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and that

{(
∂

∂ηj

)
ρ

}
form a basis of the tangent space Tρ(M), we have

g

(( ∂

∂θi

)
ρ
, ∂′

)
= ∂′ηi ∀∂′ ∈ Tρ(M). (4.23)

Similarly, we have

g

(( ∂

∂ηi

)
ρ
, ∂′

)
= ∂′θi ∀∂′ ∈ Tρ(M), (4.24)

although we use only (4.23) in this thesis.

4.4 Geometry of quantum relative entropy

In this section, we focus on the quantum relative entropy

D(ρ‖σ)
def
= Tr[ρ(log ρ − log σ)] (4.25)

for two density operators ρ, σ ∈ M and describe its properties related to the dually

flat structure (g,∇(e),∇(m)) of a QEF M as the continuation of the previous section.

First, we note that the relation

D(ρ‖σ) = φ(ρ) + ψ(σ) −
∑

i

ηi(ρ)θi(σ) (4.26)

holds for any ρ, σ ∈ M with ψ and φ defined in (4.18) and (4.19). From this, we have

D(ρ‖σ) + D(σ‖τ) − D(ρ‖τ) =
∑

i

{ηi(ρ) − ηi(σ)}{θi(τ) − θi(σ)}. (4.27)

Moreover, it can be shown that (4.27), with the positivity

D(ρ‖σ) ≥ 0, D(ρ‖σ) = 0 iff ρ = σ, (4.28)

completely characterizes the quantum relative entropy D.

Let us clarify the geometrical meaning of the right hand side of (4.27). In gen-

eral, given a coordinate system ξi and an affine connection ∇ with coefficients Γk
ij, a

geodesic with respect to ∇ is defined by the second order ordinary differential equation

ξ̈k +
∑
i,j

Γk
ij ξ̇

iξ̇j = 0. (4.29)
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If, in addition, ξi is an affine coordinate system with respect to a flat ∇, the equation

becomes ξ̈k = 0 or equivalently

ξi
t = tξi

0 + (1 − t)ξi
1. (4.30)

In particular, an e-geodesic in the QEF (4.2) is given by

θi
t = tθi

0 + (1 − t)θi
1. (4.31)

This turns out to be equivalent to

log ρt = t log ρ0 + (1 − t) log ρ1 − ψ(t),

where ψ(t) is the normalization constant. In other words, an e-geodesic of a QEF is

itself a one dimensional QEF. On the other hand, an m-geodesic is represented as

ηti = tη0i + (1 − t)η1i. (4.32)

If we consider the case M = S, the m-geodesic can be written as

ρt = tρ0 + (1 − t)ρ1. (4.33)

Such a family of states {ρt} is called a (one dimensional) mixture family, which is

related to the origin of the name “mixture connection”, but note that (4.32) is not

generally represented as (4.33) unless M = S.

Let γ : [0, 1] → M be an m-geodesic such that γ(0) = σ, γ(1) = ρ and δ : [0, 1] →
M be an e-geodesic such that δ(0) = σ, δ(1) = τ . Then, from (4.31) and (4.32) we

obtain

γ̇(0) =
∑

i

{ηi(ρ) − ηi(σ)}
( ∂

∂ηi

)
σ
∈ Tσ(M) (4.34)

and

δ̇(0) =
∑

i

{θi(τ) − θi(σ)}
( ∂

∂θi

)
σ
∈ Tσ(M). (4.35)

Hence, from (4.17) we have

g(γ̇(0), δ̇(0)) =
∑

i

{ηi(ρ) − ηi(σ)}{θi(τ) − θi(σ)} (4.36)

which coincides with the right hand side of (4.27). We thus obtain the following

theorem:
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Theorem 3. (Pythagorean relation) Let ρ, σ, τ be three points in the manifold

M such that the m-geodesic connecting ρ and σ is orthogonal at σ to the e-geodesic

connecting σ and τ with respect to the BKM Riemannian metric (see Figure 4.1).

Then, the generalized Pythagorean relation

D(ρ‖σ) + D(σ‖τ) = D(ρ‖τ) (4.37)

holds.

ρ

σ

τ

m-geodesic

e-geodesic

M

Figure 4.1: Pythagorean theorem D(ρ‖σ) + D(σ‖τ) = D(ρ‖τ)

Next, we define the m- and e-projections. Let M be a QEF of the form (4.2), and

N be a smooth submanifold of M. For an arbitrary point ρ ∈ M, let D(ρ‖·)|N be a

function on N defined by N 3 σ 7→ D(ρ‖σ). When this function is stationary (i.e.,

the derivative is zero for every direction in N ) at a point σ ∈ N , we say that σ is

an m-projection of ρ onto N . Similarly, when D(·‖ρ)|N is stationary at σ ∈ N , we

say that σ is an e-projection of ρ onto N . Then, we have the following two theorems

which are closely related to Theorem 3.

Theorem 4. The necessary and sufficient condition for σ to be an m-projection (resp.

e-projection) of ρ onto N is that the m-geodesic (resp. e-geodesic) connecting ρ and

σ is orthogonal to N at σ (see Figure 4.2).

Theorem 5. If N is e-autoparallel (resp. m-autoparallel) in M in the sense that N
forms an affine subspace in e-affine coordinates (θi) (resp. m-affine coordinates) of
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M, then an m-projection (resp. e-projection) is unique and attains the minimum of

D(ρ‖·)|N (resp. D(·‖ρ)|N ). Note that an e-autoparallel submanifold is nothing but a

QEF.

Remark 3. For proofs of the Theorem 3, Theorem 4 and Theorem 5, refer to [AN00].

ρ

σ

N

M

Figure 4.2: Projection σ from ρ ∈ M to N

Finally, we note another property of D for later use. We have the Taylor expansion

of D(ρ‖σ) (see [AN00], p 55) as

D(ρ‖σ)
def
=

1

2

∑
ij

gij(ρ)∆θi∆θj +
1

6

∑
ijk

hijk(ρ)∆θi∆θj∆θk + · · · , (4.38)

where ∆θi def
= θi(σ)−θi(ρ). Here, the second-order coefficients gij are the components

of the BKM metric and the third-order coefficients hijk are determined from gij and

the connection coefficients by

hijk
def
= ∂igjk + Γ

(e)
jk,i = Γ

(e)
ij,k + Γ

(m)
ik,j + Γ

(e)
jk,i, (4.39)

where the second equality is due to (4.14).

4.5 Approximation processes for QEF and SSQBM

The purpose of this section is to discuss the approximation processes for QEF and

SSQBM corresponding to that for CBM. We also study the parameter estimation of
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SSQBM. Recalling that the approximation process for the CBM is well understood

within the general framework of exponential families, as mentioned in Section 2.2, we

consider the corresponding problem† for QEF (see Figure 4.3). Then the following

theorem is obtained as in the classical case.

S

τ

ρθ

M

Figure 4.3: Approximation process for QEF.

Theorem 6. Suppose that we are given a density operator τ ∈ S and a QEF M =

{ρθ} ⊂ S of the form (4.2), and consider the minimization min
θ

D(τ‖ρθ), where D

denotes the quantum relative entropy defined in (4.25). Then,

θ∗ = arg min
θ

D(τ‖ρθ) (4.40)

iff

ηi(θ
∗) = Tr[τFi], ∀i. (4.41)

The gradient algorithm for computing θ∗ is represented as

θi def
= θi + ∆θi,

where

∆θi def
= −ε

∑
β

γij(θ)∂jD(τ‖ρθ)

= ε
∑

j

γij(θ){Tr[τFj] − ηj(θ)}. (4.42)

†It should be noted that the approximation process for QBM can be considered as the m-
projection from S onto S2. On the other hand, the naive mean-field approximation discussed in
Chapter 5 can be understood as the e-projection from S2 onto S1
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Let us now consider the geometrical structure of the space of SSQBMs. Following

the definition of SSQBM in Section 3.2, we have natural diffeomorphisms S ′(U) ' P
and S ′

k(U) ' Pk. We give the following theorem which describes the information

geometrical structure of S ′
k(U).

Theorem 7. For an arbitrary frame U , S ′
k(U) is a QEF and therefore is autoparallel

in S with respect to the e-connection (e-autoparallel). The induced information geo-

metrical structure (g,∇(e),∇(m)) on S ′
k(U) is dually flat and is equivalent to that of

Pk.

Proof. Obvious from the fact that an element of S ′
k(U) is represented as (see the proof

of Theorem 1 in Subsection 3.2.2)

ρ =
∑

x1,...,xn

P (x1, . . . , xn)πu1
x1

⊗ · · · ⊗ πun
xn

= exp

[ n∑
j=1

∑
i1<···<ij

θ
(j)′
i1...ij

Xi1ui1
. . . Xijuij

− ψ(θ′)

]
(4.43)

by P ∈ Pk and θ′ = (θ
(j)′
i1,...,ij

).

We now revisit the approximation process for SSQBMs (see Figure 4.4). Suppose

that we are given a density operator τ ∈ S, and consider the problem of approximating

τ by a SSQBM in S ′
2(U) = {ρθ′}, where U = {ui} is an arbitrarily fixed frame. Let

τ ′ def
=

∑
x

π̃U
x τ π̃U

x =
∑

x

Tr
[
τ π̃U

x

]
π̃U

x ∈ S ′(U),

where π̃U
x = πu1

x1
⊗ · · · ⊗ πun

xn
for x = (x1, . . . , xn). Then we obtain

Tr[τ π̃U
x ] = Tr[τ ′π̃U

x ], ∀ x (4.44)

from which it implies

Tr[τ(log σ − log τ ′)] = Tr[τ ′(log σ − log τ ′)], ∀ σ ∈ S ′(U). (4.45)

The above equation is rewritten as Tr(τ − τ ′)(log σ − log τ ′) = 0, which equals to

D(τ‖τ ′) + D(τ ′‖σ) − D(τ‖σ) = Tr(τ − τ ′)(log σ − log τ ′) = 0. (4.46)

Thus we obtain the Pythagorean relation

D(τ‖σ) = D(τ‖τ ′) + D(τ ′‖σ) (4.47)



4.5 Approximation processes for QEF and SSQBM 36

for any σ ∈ S ′(U), which implies

τ ′ = arg min
σ∈S′(U)

D(τ‖σ). (4.48)

Let us now consider a SSQBM

ρθ′ =
∑

Pθ′(x)π̃U
x (Pθ′ ∈ P2) (4.49)

and

τ ′ =
∑

q′(x)π̃U
x (q′ ∈ P). (4.50)

By replacing σ by ρθ′ in (4.47), we obtain the following Pythagorean relation

D(τ‖ρθ′) = D(τ‖τ ′) + D(τ ′‖ρθ′).

This implies

arg min
θ′

D(τ‖ρθ′) = arg min
θ′

D(τ ′‖ρθ′)

where D(τ ′‖ρθ′) is nothing but the KL divergence D(q′‖Pθ′). This leads to the fol-

S

τ

τ
′

S ′(U)

S
′

2(U)

ρ(h′,w′)

Figure 4.4: Approximation process for SSQBM.

lowing theorem.

Theorem 8. The approximation process to find

θ′
∗

= arg min
θ′

D(τ‖ρθ′),
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where θ′ = (h′, w′), is decomposed into two parts:

τ ′ = arg min
σ∈S′(U)

D(τ‖σ)

and

θ′
∗

= arg min
θ′

D(τ ′‖ρθ′).

The second part turns out to be equivalent to the approximation problem for the CBM

addressed in Section 2.2 by S ′
2(U) ' P2.

Finally, in this section, we consider the parameter estimation of SSQBMs. Sup-

pose that we are given N independent quantum systems, each of which is a SSQBM

ρθ′ (θ′ = (h′
i, w

′
ij)) with frame U and that we perform a projective measurement πU

on each SSQBM given by the PVM

πU
def
= {π̃U

x}x∈{−1,+1}n , (4.51)

where π̃U
x = πu1

x1
⊗πu2

x2
⊗πun

xn
for x = (x1, . . . , xn), to yield a set of data {x(1), . . . , x(N)}.

Let P̂ denote the empirical distribution of {x(t)}N
t=1 and let

τ̂
def
=

∑
x

P̂ (x)π̃U
x . (4.52)

Then, recalling that an SSQBM ρθ′ ∈ S ′
2(U) is represented as

ρθ′ =
∑

x

Pθ′(x)π̃U
x (4.53)

by a CBM Pθ′ , we have

θ̂′
def
= θ̂′MLE(x(1), . . . , x(N))

= arg max
θ′

Pθ′(x(1))Pθ′(x(2)) · · ·Pθ′(x(N))

= arg min
θ′

D(P̂‖Pθ′)

= arg min
θ′

D(τ̂‖ρθ′). (4.54)

This means that the MLE for the data is given by the approximation process for τ̂ .



Chapter 5

Information geometry of mean-field

approximation for QBMs

This chapter discusses the information geometrical interpretation of the mean-

field approximation for QBMs. First we derive the naive mean-field equation for

QBMs using the concepts of e- and m- projections. Then the higher-order corrections

are discussed noting the correspondence of the coefficients of Plefka expansion to

the information geometrical quantities of a Taylor expansion of the quantum relative

entropy.

5.1 The e-, m-projections and naive mean-field ap-

proximation

In this section, we derive the naive mean-field equation for QBMs explicitly from

the viewpoint of information geometry. Suppose that we are interested in calculating

the expectations mis = Tr[ρh,wXis] from given (h,w) = (his, wijst). Since the direct

calculation is intractable in general when the system size is large, we need to em-

ploy a computationally efficient approximation method. Mean-field approximation

is a well-known technique for this purpose. The simple idea behind the mean-field

approximation for a ρh,w ∈ S2 is to use quantities obtained in the form of expectation

with respect to some relevant τh̄ ∈ S1. As explained in the Chapter 1, T. Tanaka

[Tan96, Tan00] has elucidated the essence of the naive mean-field approximation for

classical spin models in terms of e-, m-projections. Our aim is to extend this idea to

quantized spin models.

In the following arguments, we regard S2 as a QEF with the natural coordinates

38
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(θα) = (his, wijst) and the expectation coordinates (ηα) = (mis, µijst) (see (4.4)),

where α is an index denoting α = (i, s) or α = (i, j, s, t). First, let us consider the

m-projection onto S1 and show that it preserves the expectations mis. Note that

since S1 is e-autoparallel in S2, the m-projection is unique and attains the minimum

of D by Theorem 5. Suppose ρ = ρh,w ∈ S2 is given and τ ∈ S1 be its m-projection.

Let γ be the m-geodesic such that γ(1) = ρ, γ(0) = τ . Then, from (4.32) we have

ηα(γ(t)) = t ηα(ρ) + (1 − t) ηα(τ), (5.1)

and, in particular,

mis(γ(t)) = tmis(ρ) + (1 − t) mis(τ). (5.2)

Hence, substituting θi := his, ηi := mis, ∂
′ := γ̇(0) and ρ := τ into (4.23) we get

g

(( ∂

∂his

)
τ
, γ̇(0)

)
=

dmis(γ(t))

dt

∣∣∣∣
t=0

= mis(ρ) − mis(τ). (5.3)

Since

Tτ (S1) = span

{( ∂

∂his

)
τ

}
, (5.4)

it follows from (5.3) and Theorem 4 that mis(ρ) = mis(τ). This means that the

expectation values do not change if we use the m-projection.

Next, we show that the naive mean-field equation is derived by considering e-

projection. Suppose that τ = τh̄ ∈ S1 is an e-projection of ρ = ρh,w ∈ S2 onto S1,

and let γ be the e-geodesic such that γ(1) = ρ, γ(0) = τ . Note that from (4.31)

dθα(γ(t))

dt

∣∣∣∣
t=0

= θα(ρ) − θα(τ), (5.5)

i.e.,

dhis(γ(t))

dt

∣∣∣∣
t=0

= his(ρ) − his(τ) = his − h̄is (5.6)

dwijst(γ(t))

dt

∣∣∣∣
t=0

= wijst(ρ) = wijst since wijst(τ) = 0. (5.7)

Now, recall that (m̄is) defined by (4.5) form a coordinate system of S1, so that

Tτ (S1) = span

{( ∂

∂m̄is

)
τ

}
is

. (5.8)
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Hence it follows from Theorem 4 that, ∀i, s,

0 = g

(
γ̇(0),

( ∂

∂m̄is

)
τ

)
=

∑
α

dθα(γ(t))

dt

∣∣∣∣
t=0

g

(( ∂

∂θα

)
τ
,
( ∂

∂m̄is

)
τ

)
=

∑
α

dθα(γ(t))

dt

∣∣∣∣
t=0

( ∂ηα

∂m̄is

)
τ

(from (4.23))

=
∑
j,t

(hjt − h̄jt)
∂mjt

∂m̄is

+
∑
j<k

∑
t,u

wjktu
∂µjktu

∂m̄is

= his − h̄is +
∑

(i<)k,u

wiksum̄ku +
∑

(i>)j,t

wjitsm̄jt

(since mjt = m̄jt and µjktu = m̄jtm̄ku on S1)

= his − h̄is +
∑
j,t

wijstm̄jt,

where the last equality follows by letting

wiist
def
= 0 and wijst

def
= wjits (i > j). (5.9)

We thus obtain

h̄is = his +
∑
j,t

wijstm̄jt. (5.10)

Both (4.6) (or (4.7)) and (5.10) together give the naive mean-field equation for QBMs.

It should be remarked that this naive mean-field equation may have several solutions

{h̄is} for a given set of {his, wijst} as in the classical case, which correspond to the

fact that e-projection onto an e-autoparallel submanifold is not unique in general.

In this section, we have shown some properties of m- and e-projections based on the

geometrical characterization given in Theorem 4, but note that the same properties

can also be derived in several different ways; for instance, we can use the relations

(4.18)-(4.19) and (4.26) for ψ and φ to derive them as was shown for the classical

case in Subsection 2.3.2.

5.2 Plefka expansion and higher-order mean-field

approximations

Although the naive mean-field approximation is used extensively as a common

tool to compute characteristic quantities of multi-particle systems, it is necessary
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to consider higher-order mean-field approximations to improve the accuracy in some

situations. In this section, we discuss a method to derive higher-order mean-field

approximations which utilizes a Taylor expansion of the quantum relative entropy.

This coincides with the Plefka expansion of the Gibbs potential as pointed out at the

end of the Section. We elucidate the correspondence of the coefficients of the Taylor

expansion to the information geometrical quantities such as the metric and the e-,

m-connections.

We start the discussion of higher-order approximations by recalling that the ele-

ments of S2 are parametrized as ρh,w by h = (his) and w = (wijst). This means that

(θα) = (h,w) forms a coordinate system of the manifold S2. In viewing S2 as a QEF,

(h,w) is a natural coordinate system, while the corresponding expectation coordinate

system is given by (ηα) = (m,µ) with m = (mis) and η = (ηijst). Let us now define

a third (or hybrid) coordinate system (ξα)
def
= (m, w). The elements of S2 are then

parametrized by (m,w), which we denote by ρ̂m,w to avoid confusion with ρh,w. Note

that

S2 = {ρh,w | (h,w) : free} = {ρ̂m,w | (m,w) : free} (5.11)

and that

ρ̂m,w = ρh,w ⇐⇒ ∀i, ∀s, mis = Tr[ρh,wXis]. (5.12)

For an arbitrarily fixed w, a submanifold of S2 is defined by

F(w)
def
= {ρh,w | h : free} = {ρ̂m,w | m : free}. (5.13)

As a special case we have

F(0) = {ρh,0 | h : free} = {ρ̂m,0 | m : free} = S1

which is the manifold of product states. We see that the family {F(w)}w forms a

foliation of S2 as

S2 =
∪
w

F(w). (5.14)

Similarly, for an arbitrarily fixed m we define

A(m)
def
= {ρ̂m,w | w : free}
= {ρ ∈ S2 | ∀i, ∀s, mis = Tr[ρXis]}, (5.15)

which yields another foliation of S2 as

S2 =
∪
m

A(m). (5.16)
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These foliations have several special properties. First, for any w, F(w) is defined

by fixing w which is a part of e-affine coordinates (θα) = (h,w) of S2. This implies

that F(w) is e-autoparallel in S2 in the sense mentioned in Theorem 5. On the other

hand, each A(m) is m-autoparallel in S2. Furthermore, ∀w,∀m,

F(w) ⊥ A(m) at σ ∈ F(w) ∩ A(m). (5.17)

To see this, we note that the tangent spaces of F(w) and A(m) at σ are given by

Tσ(F(w)) = span

{( ∂

∂his

)
σ

}
is

(5.18)

and

Tσ(A(m)) = span

{( ∂

∂µjktu

)
σ

}
jktu

. (5.19)

The inner product g
(

∂
∂his

, ∂
∂µjktu

)
is a special case of g

(
∂

∂θα , ∂
∂ηβ

)
with α 6= β, hence

is zero from (4.17), which proves (5.17). These properties mean that {F(w)}w and

{A(m)}m jointly give an example of mutually dual foliations (see Figure 5.1) defined in

[AN00] (pp 75-76). It is now easy to see from Theorem 3 that for any points ρ ∈ A(m)

A(m)

S2

A(m′)

F(w)

e-a.p.

m-a.p.

e-a.p. m-a.p.

F(w′)

Figure 5.1: Mutually dual foliations of S2. Here, “e-a.p.” and “m-a.p.” stand for

“e-autoparallel” and “m-autoparallel”, respectively.

and τ ∈ F(w) with the intersecting point σ ∈ A(m)∩F(w) the Pythagorean relation

(4.37) holds. We also note that, for any w and m, both F(w) and A(m) are dually

flat with respect to their e-, m-connections and the BKM metrics. This is obvious for

F(w) because F(w) itself is a QEF. On the other hand, since A(m) is m-autoparallel
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in S2 which is m-flat, we can easily see that A(m) is also m-flat, and hence is dually

flat as mentioned in Section 4.3. Actually, (µijst) and (wijst) restricted to A(m) turn

out m-affine and e-affine coordinate systems respectively.

Let us now restate the problem which motivates both the naive mean-field approx-

imation and its higher-order extension. Given h = (his) and w = (wijst) arbitrarily,

consider the problem of calculating the expectations Tr[ρh,wXis] or their approxima-

tions from (h,w). From

∀i, ∀s,
∂

∂mis

D(ρ̂m,w‖ρh,w) = 0 ⇐⇒ D(ρ̂m,w‖ρh,w) = min
m′

D(ρ̂m′,w‖ρh,w)

⇐⇒ ρ̂m,w = arg min
σ∈F(w)

D(σ‖ρh,w) = ρh,w

⇐⇒ ∀i, ∀s, mis = Tr[ρh,wXis],

where the last equivalence follows from (5.12), we have the expectations mis as the

solution of the equation
∂

∂mis

D(ρ̂m,w‖ρh,w) = 0. (5.20)

Of course, this method is practical only when the relative entropy D(ρ̂m,w‖ρh,w) is not

too complicated as a function of the variables m = (mis), which cannot be expected

in general when n, the number of elements in the system, is large. On the other hand,

if we let w = 0 in the first argument of D(ρ̂m,w‖ρh,w), then the resulting D(ρ̂m,0‖ρh,w)

becomes the sum of simple functions of m = (mis), and hence the equation

∂

∂mis

D(ρ̂m,0‖ρh,w) = 0 (5.21)

is much more tractable than the original one in (5.20). When ‖w‖ is sufficiently small

so that D(ρ̂m,w‖ρh,w) is well approximated by D(ρ̂m,0‖ρh,w), the solution of (5.21) will

give a good approximation for the true expectations. This is nothing but the idea

of naive mean-field approximation. Actually, equation (5.21) means that ρ̂m,0 is an

e-projection of ρh,w onto F(0) = S1, which turns out to be equivalent to (5.10) as

shown in the previous Section.

Now that the accuracy of the naive mean-field approximation depends on how

close the function D(ρ̂m,w‖ρh,w) is to its substitute D(ρ̂m,0‖ρh,w). Therefore, it is

natural to expect that the approximation can be improved by properly retrieving

the difference D(ρ̂m,0‖ρh,w) − D(ρ̂m,w‖ρh,w) up to a certain order of w. This is the

information geometrical interpretation of the idea due to Plefka [Ple82, Ple06], and we

call the expansion of the difference with respect to w the Plefka expansion following

Tanaka [Tan00] who originally gave a similar interpretation in the classical case.
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From the information geometrical viewpoint, the gist of this approach is the fact that

the Pythagorean relation (4.37) holds for the three points ρh,w, ρ̂m,w and ρ̂m,0 (see

Figure 5.2) so that we have

D(ρ̂m,0‖ρh,w) − D(ρ̂m,w‖ρh,w) = D(ρ̂m,0‖ρ̂m,w). (5.22)

The problem is thus reduced to expansion of D(ρ̂m,0‖ρ̂m,w) with respect to w. Noting

F(w)

S2

A(m)

ρ̂m,w

ρ̂m,0

D(ρ̂m,w‖ρh,w)

D(ρ̂m,0‖ρh,w)

ρh,w

F(0) = S1

D(ρ̂m,0‖ρ̂m,w)

Figure 5.2: Pythagorean relation D(ρ̂m,0‖ρh,w) = D(ρ̂m,0‖ρ̂m,w) + D(ρ̂m,w‖ρh,w)

that ρ̂m,0 and ρ̂m,w are points on the manifold A(m) for which the coupling coefficients

w = (wijst) form a coordinate system, the expansion formula (4.38) with (4.39) is

applied to yield the Plefka expansion

D(ρ̂m,0‖ρ̂m,w) =
1

2

∑
IJ

gIJ wI wJ +
1

6

∑
IJK

hIJK wI wJ wK + · · · (5.23)

with

hIJK = ∂̂IgJK + Γ
(e)
JK,I = Γ

(e)
IJ,K + Γ

(m)
IK,J + Γ

(e)
JK,I , (5.24)

where the indices I, J,K represent quadruplets of indices such as (i, j, s, t). Here, gIJ ,

Γ
(e)
IJ,K and Γ

(m)
IJ,K are respectively the components of the BKM metric, the e-connection

and the m-connection of the manifold A(m), and ∂̂I denotes ∂
∂wI

for the coordinates

(wI) of A(m), all evaluated at the point ρ̂m,0.

More specifically, it follows from (4.8) that

gIJ =

∫ 1

0

Tr
[
ρ̂λ(∂̂I log ρ̂)ρ̂1−λ(∂̂J log ρ̂)

]
dλ, (5.25)
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where ρ̂ = ρ̂m,0 and

∂̂I log ρ̂ =
∂

∂wI

log ρ̂m,w

∣∣∣∣
w=0

. (5.26)

We have the following relation

∂̂I log ρ̂ = (Xis − mis) (Xjt − mjt) (5.27)

for I = (i, j, s, t) which can be calculated as shown below. It follows from (5.37) that( ∂χ

∂wijst

)
ξ

= µijst = mismjt (when w = 0), (5.28)( ∂χ

∂mis

)
ξ

= −his, (5.29)

where (·)ξ means that the partial differentiations are those with respect to the coordi-

nate system ξ = (m,w). Note that ∂̂I in (5.27) for I = (i, j, s, t) is ( ∂
∂wijst

)ξ evaluated

at w = 0. Now, from equations (3.4) and (5.34), we obtain

log ρ̂m,w =
∑
ku

hkuXku +
∑
kluv

wkluvXkuXlv − ψ

=
∑
ku

hku(Xku − mku) +
∑
kluv

wkluvXkuXlv − χ (5.30)

and

∂̂I log ρ̂m,w =
∑
ku

(∂hku

∂wI

)
ξ
(Xku − mku) + XisXjt −

( ∂χ

∂wI

)
ξ
. (5.31)

Here, (∂hku

∂wI

)
ξ

= −
( ∂2χ

∂wI∂mku

)
ξ

(from equation (5.29))

= −
( ∂

∂mku

( ∂χ

∂wI

)
ξ

)
ξ

= −∂ mismjt

∂mku

(from equation (5.28))

= −δikδsumjt − δjkδtumis.

Substituting this and (5.28) in (5.31), we have

∂̂I log ρ̂m,w = −(Xis − mis)mjt − (Xjt − mjt)mis + XisXjt − mismjt

= (Xis − mis)(Xjt − mjt),

which completes the derivation. As for the third-order coefficients hIJK in (5.24), we

first note that w = (wI) is an e-affine coordinate system of A(m) as mentioned before
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and hence Γ
(e)
IJ,K = 0. As a consequence, we have

hIJK = ∂̂IgJK = Γ
(m)
IK,J

= 2 Re

∫∫
0≤ν≤λ≤1

Tr
[
ρ̂ν(∂̂I log ρ̂)ρ̂λ−ν(∂̂J log ρ̂)ρ̂1−λ(∂̂K log ρ̂)

]
dν dλ, (5.32)

where we have invoked (4.15) and (4.16).

If we succeed in obtaining explicit expressions for gIJ , hIJK and if they are not

too complicated as functions of the mean variables m = (mis), we can take

D(ρ̂m,0‖ρh,w) − 1

2

∑
IJ

gIJ wI wJ

or

D(ρ̂m,0‖ρh,w) − 1

2

∑
IJ

gIJ wI wJ − 1

6

∑
IJK

hIJK wI wJ wK

as a substitute of

D(ρ̂m,w‖ρh,w) = D(ρ̂m,0‖ρh,w) − D(ρ̂m,0‖ρ̂m,w) (5.33)

in equation (5.20) to improve the naive mean-field approximation (5.21).

Before closing this section, we verify the equivalence between our discussion and

the original formulation of Plefka for expansion of the Gibbs potential. Let us define

a function χ : S2 → R by

χ(ρ)
def
= ψ(ρ) −

∑
i,s

mis(ρ)his(ρ) (5.34)

= S(ρ) +
∑

i<j,s,t

µijst(ρ)wijst(ρ), ∀ρ ∈ S2 (5.35)

where the second equality follows from (4.19) and φ(ρ) = −S(ρ). Noting that equa-

tion (4.18) yields

dψ =
∑

α

ηαdθα =
∑
i,s

misdhis +
∑

i<j,s,t

µijstdwijst, (5.36)

we obtain from equation (5.34) that

dχ = dψ −
∑
i,s

misdhis −
∑
i,s

hisdmis

=
∑

i<j,s,t

µijstdwijst −
∑
i,s

hisdmis. (5.37)
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This shows that it is natural to represent χ as a function of independent variables

(m,w) by χ(ρ̂m,w), which corresponds to what is called the Gibbs potential in [Ple82,

Ple06]. Now, it is immediate from (4.26) and (5.34) that, for any (m, w) = (mis, wijst),

χ(ρ̂m,w) = S(ρ̂m,0) +
∑

i<j,s,t

mismjtwijst + D(ρ̂m,0‖ρ̂m,w). (5.38)

This implies that the expansions of χ(ρ̂m,w) and D(ρ̂m,0‖ρ̂m,w) with respect to w are

equivalent except for 0th and first-order terms.

5.3 Some possible extensions

The present information geometrical formulation can be applied to models other

than the QBMs. For instance, an immediate application is to employ this method for

the mean-field approximation of higher-order QBMs. The higher-order QBMs (3.2)

can be represented as

ρ = exp

{∑
i,s

hisXis +
∑
i<j

∑
s,t

wijstXisXjt +
∑

i<j<k

∑
s,t,u

vijkstuXisXjtXku + · · · − ψ(θ)

}
.

(5.39)

Another important extension is to consider the q-state quantum spin model where

each element in the system has a Hilbert space Cq and the whole system corresponds

to a Hilbert space (Cq)⊗n, where n is the number of elements. Obviously, we obtain

the present model for q = 2. It would be useful to find many other applications of

this framework for quantum statistical models beyond the given two examples.



Chapter 6

Concluding remarks

6.1 Conclusions

In this thesis, we have found a possible quantum extension of the CBM and

investigated some properties from the information geometrical point of view. We

outline the conclusions of this work:

(1) A quantum extension of the CBM has been found which we call QBM. We have

also defined a restricted class of it called SSQBM.

(2) A state renewal rule for SSQBM has been proposed based on that for CBM.

The convergence of this state renewal rule is guaranteed by the Gibbs sampler.

(3) It has been shown that the totality of QBMs forms a quantum exponential

family. Moreover, the information geometrical structure of the space of QBMs

has also been discussed.

(4) The approximation process for QBMs has been studied.

(5) The geometrical structure of the totality of SSQBMs has been shown to be

equivalent to that of CBMs. The approximation process for SSQBM and the

estimation of parameters has also been studied in this framework.

(6) Mean-field approximation for QBMs has been studied from the information geo-

metrical point of view. Naive mean-field equation for QBMs has been explicitly

derived utilizing the concept of e-projection.

(7) Higher-order mean-field approximations based on the Plefka expansion have

also been discussed in this geometrical framework.

48
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6.2 Future work

We mention several open problems remaining for further research:

(1) To study the dynamical and neural aspects of QBMs including the computa-

tional capabilities. It may be interesting to apply such a model to optimization

problems (possibly from the point of view of adiabatic quantum computation

and quantum annealing).

(2) A more general study concerning the statistical and probabilistic aspects of

QBMs (as a special case of quantum Markov random field).

(3) To investigate the deeper relations to quantum statistical mechanics.

(4) To establish the higher-order mean-field approximations explicitly and to study

higher-order QBMs.
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