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Information Geometrical
Study of

Quantum Boltzmann Machines
Nihal Yapage
Abstract

In this thesis, we consider quantum extension of the well-known stochastic neural
network model called (classical) Boltzmann machine (CBM) from an information
geometrical point of view. The new model is called quantum Boltzmann machine
(QBM). We investigate some properties and geometrical aspects of QBM analogous to
those of CBM. Furthermore, we study the mean-field approximation for such a model
from the information geometrical point of view. This is in some sense motivated by
the application of mean-field approximation for probabilistic inference in the graphical
models in the classical probability theory. Although the problem tackled in the present
thesis is somewhat deviated from the major field of quantum information theory, we
have elucidated the relationships among several well-known fields such as statistical
physics, differential geometry, information theory and statistics using the concepts of
the new emerging subject of quantum information geometry.

We first define QBMs which can be considered as a general class of quantum
Ising spin models. The states we consider are assumed to have at most second-
order interactions with arbitrary but deterministic coupling coefficients. We call such
a state a QBM for the reason that it can be regarded as a quantum extension of
the equilibrium distribution of CBM. The totality of QBMs is then shown to form
a quantum exponential family and thus can be considered as a smooth manifold
having similar geometrical structures to those of CBMs. The information geometrical
structure of the manifold of QBMs is discussed and the problem of approximating a
given quantum state (density operator) by a QBM is also treated.

We also define a restricted class of QBMs called the strongly separable (QBMs
(SSQBMs). We consider the dynamics of SSQBMs and propose a new state renewal
rule based on that of CBM. The geometrical structure of the totality of SSQBMs is
shown to be equivalent to that of the totality of CBMs. Approximation process for
SSQBMs is also studied. Finally, we briefly discuss the parameter estimation of a
SSQBM.

Next, we study the mean-field approrimation for QBMs from an information geo-

metrical point of view. We elaborate on the significance and usefulness of information

il



iv
geometrical concepts, in particular the e-(exponential) and m-(mixture) projections,
in studying the naive mean-field approximation for QBMs and derive the naive mean-
field equation explicitly. We also discuss the higher-order corrections to the naive
mean-field approximation based on the idea of Plefka expansion in statistical physics.
We elucidate the geometrical essence of the corrections and provide the expansion
coefficients with expressions in terms of information geometrical quantities. Here,

one may note this work as the information geometrical interpretation of [Ple06] and

as the quantum extension of [Tan00].
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Chapter 1

Introduction

1.1 Overview

It is often both important and interesting to study the problems in the interface
of the fields such as physics, geometry, information theory, and statistics. This paves
the way to the advancement of such fields too. In this thesis, we study a similar
interdisciplinary problem which lies in the interface of such fields.

Information geometry as a new field has been found very useful in understanding
the deep mathematical structures in the interface of many fields [Ama85, AN00]. This
theory has been used in many situations to study the geometrical properties of the
space of parametrized probability distributions or quantum states.

On the other hand, the (classical) Boltzmann machine (CBM) [AHS85] is a well-
known stochastic neural network model. Physically, it can be viewed as a classical
spin system. The statistical aspects of CBM have been elucidated in [NK95]. The in-
formation geometrical structure of the space of CBMs has been discussed in [AKN92].

Stimulated by the above works, we find a possible quantum extension which cor-
respond to the equilibrium distribution of CBM and is called quantum Boltzmann
machine (QBM*). We can consider QBM as a quantum spin system. Similar to
CBM, each QBM has two kinds of real-valued parameters, namely h, the thresholds
in neural network contexts and the external fields in physical contexts, and w, the
coupling coefficients (to be defined in Section 3.1). We remark that these parameters

are arbitrary but deterministic in our model, while the coupling coefficients are usu-

*We note that QBM, at present, lacks any notions corresponding to the stochastic dynamics of
CBM which determine its equilibrium distribution. This means that our approach does not suggest

how to quantize the neural aspects of CBM.
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ally considered to be random variables in case of spin glasses in physics. We study
the approximation process’ for QBM similar to that of CBM.

We regard the set of QBMs parametrized by (h,w) as a quantum exponential fam-
ily, a smooth manifold which has a similar form to an exponential family in statistics,
on which a Riemannian metric and a couple of affine connections are naturally defined.
These differential geometrical structures turn out to have a characteristic property
called the dually flatness and are closely related to the quantum relative entropy (see
Chapter 4).

A restricted class of QBMs called the strongly separable QBMs (SSQBMs) is
defined. The totality of SSQBMs and that of CBMs are shown to be geometrically
equivalent. For SSQBMs, we define a state renewal rule based on that for CBM. The
approximation process is also discussed similarly.

As mentioned above, we view the QBM as a spin system with finite but large
number of spins connected in some way. When we are working with such multi-
particle systems with mutual interactions, the calculation of characteristic quantities
such as expectations and correlations of relevant observables with respect to the
density operator of the system is very important. This is, in general, computationally
a very time-consuming problem since the required time increases exponentially with
the number of elements in the system. One may find many obstacles due to the high
complexity and such problems are not easy to tackle with exact methods. Thus, it is
inevitable to employ an approximation method to get rid of this difficulty.

The so-called mean-field approzimation was originated in statistical physics. The
basic idea of the mean-field approximation is to use a simple tractable family of
probability distributions (or density operators) to calculate characteristic quantities
with respect to a probability distribution (or a density operator) including mutual
interactions. It has been widely used both in classical and quantum physics as well
as in other fields such as information theory, statistics, etc. In particular, it has been
employed to get rid of the high computational cost in stochastic neural networks
like CBMs. Such approximations have been found indispensable also to the study of
probabilistic graphical models [JGJS99, OS01] in general where CBM is one example.
T. Tanaka [Tan96, Tan00] has studied the mean-field approximation for a general class
of classical Ising spin models, which are identified with the equilibrium distributions

of CBMs, from the viewpoint of information geometry; see also [BK00, AIS01] for

tThe “approximation process” and the “mean-field approximation” considered in this thesis cor-
respond to m-projection and e-projection respectively and should clearly be distinguished from one

another
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related works.

Motivated by the above works, we study the mean-field approximation for QBMs
from the viewpoint of quantum information geometry. Using the above mentioned
geometrical setup on the space of QBMs, we find the information geometrical in-
terpretation of mean-field approximation for QBMs. We elucidate the geometrical
essence of the naive mean-field approximation for the QBMs as well as the higher-

order extensions based on the idea of Plefka expansion in statistical physics.

1.2 Summary of results

In this section, we summarize the results obtained in this thesis. The results can

be divided into two main parts:

(1) A quantum extension of classical Boltzmann machine (CBM). The relevant

results are contained in Chapter 3 and Chapter 4

e Definition of quantum Boltzmann machine (QBM): Section 3.1.

e Definition of a restricted class of QBMs called strongly separable QBMs
(SSQBMs) and proposal of a state renewal rule based on that for CBM:
Section 3.2

e Information geometrical structure of the space of QBMs: Chapter 4.

e The approximation processes for QBMs and SSQBMs and the parameter
estimation of SSQBM are discussed in: Section 4.5

(2) Information geometry of mean-field approximation for QBMs. The relevant

results are contained in Chapter 5

e Derivation of naive mean-field equation for QBMs: Section 5.1

e Information geometrical understanding of higher-order approximations:
Section 5.2

The above mentioned results have been published in [YN05, YN06, YNOS].

1.3 Organization of the thesis

The structure of this thesis is as follows. In the next chapter, we briefly review the
CBM including dynamics, approximation process and information geometrical inter-

pretation of mean-field approximation. We define QBM in Chapter 3 corresponding
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to the equilibrium distribution of CBM. Furthermore, we define a restricted class of
QBMs called SSQBMs. The information geometrical structure of the space of QBMs
is discussed in Chapter 4. We devote Chapter 5 to study the mean-field approxima-
tion for QBMs from an information geometrical point of view. Concluding remarks

and open problems are presented in Chapter 6.



Chapter 2

A review of (classical) Boltzmann
machine (CBM)

In this chapter, we briefly review the properties of the Boltzmann machine (which
we call CBM in this thesis) including the dynamics, approximation process and learn-
ing, elucidating the fact that the totality of CBMs forms an exponential family. Next,
we discuss the information geometrical interpretation of the mean-field approximation

for CBM following the formulation originally presented in [Tan00].

2.1 Definition, state renewal rule and some prop-

erties

A CBM [AHSS85, AK89] can be considered as a network of n elements numbered
as 1,2,...,n. Let the value of each element i € {1,2,...,n} be z; € {—1,+1}. Then
a state of the CBM can be represented as @ = (z1,,...,2,) € {—1,4+1}". Each
element i € {1,2,...,n} carries a threshold value h; € R. The CBM also has a
real-valued parameter w;; for each pair of elements {¢, j}, which is called the coupling
coefficient or weight between ¢ and j. These parameters are assumed to satisfy con-
ditions w;; = wj;, w; = 0. When the CBM is in the state = (1, 22,...,2,), the

input to the element ¢ from the other elements is defined by
IZ(QA?> = Zwijxj + hi,
j=1

where & = (x1,...,2%;_1,%is1,...,Ty). The state renewal rule x — =’ = (2}, ..., 2))

rn

of the CBM is as follows: we choose an element, say the element ¢, randomly and the

5
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value of the element is set to 1 according to the probability

1

Prob{s =1} = T (C2L.@) /1)

(2.1)

where the real-valued parameter 7' is called the temperature of the network.

Remark 1. In view of parametrization of probability distributions (or density op-
erators in the quantum setting), the temperature T is redundant. Therefore, in the

sequel, we assume T = 1.

During this state renewal process, the value of the elements j(# i) does not change.
That means the state update of the CBM is sequential. This process defines a Markov
chain on the product set {—1,+1}", whose equilibrium (stationary) distribution is
given by

Dhw(T) = exp { Z hix; + Z wixix; —Y(h, w)}, (2.2)
i i<j
where
Y(h,w) = log Z exp{z hix; + Z wij:cia:j}.
= i i<j
Thus, noting that the correspondence py,, < (h,w) is one to one, we can, at least

mathematically, identify each CBM with its equilibrium probability distribution.

Remark 2. Neural network community usually considers z; € {0, 1} while physicists
use x; € {—1,41}. Fach can be replaced by the other without changing the essence

of the argument.

Many good properties of the CBM are consequences of the fact that the equilib-
rium distributions form an exponential family. Here, we discuss this important aspect
of the CBM [NK95] briefly. Let X be a finite set or, more generally, a measurable
space with an underlying measure du. We denote the set of positive probability dis-
tributions (probability mass functions for a finite X and probability density functions
for a general (X,du)) on X by P = P(X). When a family of distributions, say

M=1{py|0=(0); i=1,...,n} CP, (2.3)

is represented in the form

po(x) = exp{c(af;) + ZerZ(x) — w(G)}, re X, (2.4)
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M is called an exponential family. Here, 6; i = 1,...,n are real-valued parameters,
c and f; are functions on X and () is a real-valued convex function. Further, we
assume that the correspondence 6 +— pg is one to one. These 6 = (0") are called the
natural coordinates of M.

Now, for the exponential family M, if we let
ef
i ( d E@ f i ZP@

then n = (n;) and § = (") are in one-to-one correspondence. That is, we can also
use 7 instead of 6 to specify an element of M. These (7;) are called the ezpectation
coordinates of M. The expectation coordinates are, in general, represented as
0
=ow) (0. 2.5
7 Y (6) 50 (2.5)

The set that consists of equilibrium probability distributions of Boltzmann ma-

chine (2.2) is one example of exponential family. In addition, threshold values and cou-
pling coeflicients (weights) become the natural coordinates while Eg[x;] and Eg[z;x;]
become expectation coordinates. The notion of exponential family is very important
in statistics and information geometry, and is also useful in studying properties of
CBMs with their mean-field approximations.

Let us now consider a hierarchy of exponential families and show that the totality
of CBMs is included in it. Let P = P({—1,+1}"). For k € {1,...,n}, let Py be the
set of probability distributions of the form

po(x) = exp{ZH xl—i-Z@(Z)xxj -+ Z 9“ i iy —1#(0)}

1<j 11 <o <ip

= exp{z Z Qz(f)z]:czl ey, — w(G)} (2.6)

j:l i1<,..<ij

with
logZeXp{Z Z 921 ;i }, (2.7)
J=1 1< <q
where @ = (z1,...,2,) € {—1,+1}". Then Py also turns out to be an exponential

family of dimension Z?Zl »C;. Thus, we have a hierarchical structure of exponential
families P; C P, C --- C P, = P. In particular, P; and P can be represented by

P = {pi(z1) - pp(x,)} = {product distributions} and
P, = {equilibrium distributions of CBM} (see (2.2))

respectively. Note also that P itself is an exponential family of dimension 2" — 1.
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2.2 Approximation process and learning

Suppose that we are given an exponential family M C P of the form (2.4) and an
arbitrary probability distribution ¢ € P outside M. Let us consider the problem of
approximating ¢ by an element pg € M. We adopt the Kullback-Leibler information

divergence

D(qllps) = Y q() log ) (2.8)

pe(x)

as the criterion of approximation. Our interest is to find # which minimizes D(q||py),

T

that is, arg miny D(q||pg). Geometrically, this can be understood as the m-projection
defined in Subsection 2.3.2. Then, it is shown that

0" —argmmD(qua)@m( ") =Eq[fi, Vi, (2.9)

where E, denotes the expectation with respect to the probability distribution g. Ac-

tually, for any #, we have

D(qllpe) = D(ql|pe-) + D(po-||po),

which is an example of the Pythagorean relation for D.

When a sequence of data x(1),...,x(N) is given, the approximation
min D(dllp)

of the empirical distribution

q= % ; (i)
(where 0, denotes the probability distribution satisfying d,(x) = 1) can be regarded
as a process of learning from the data. In particular, when the data x(1),...,x(N)
are assumed to be drawn from an unknown distribution in M, the learning turns out
to be the mazimum likelihood estimation (MLE).

An algorithm for computing this approximation is the gradient method. In this
method, we assume that a positive-definite symmetric matrix [y¥ ()] € R™*" is spec-
ified for each point # € R", and a small positive constant € is given in advance.
Then, starting from an arbitrary initial value 6, this process recurrently updates 6 for

sufficiently many times according to

N —527” 8)0;D(q|lpe). (2.10)

—aZw HE,[f;] = n;(0)}, (2.11)
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N N

until ||A8|| becomes sufficiently small, which implies the convergence of py to pg-.
Here, taking the value of ¢ smaller, the accuracy of approximation becomes better
but by that much the rate of convergence becomes slower.

As a special case of this method, we obtain the learning algorithm for the CBM
proposed by Ackley et al. in [AHS85]. They showed that, setting the initial value

Figure 2.1: Approximation process for CBM.

of 8 = {h;,w;;} arbitrarily and going recursively updating this according to the
following equations, # which minimizes D(q||pg) can be found approximately after
sufficient number of updates:

N e(inq(m)—inpg(x)) (2.12)

( 2 2
Aw; = 5<Z virq(e) — chﬂjpe(w)) (2.13)
(

and

def

wi; = wi + Awy,

where E,[-] and Eg[-] represent the expectation values with respect to ¢ and py respec-
tively. Equations (2.12) and (2.13) are nothing but (2.11) applied to M = P, with
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[v7(8)] = [6“] (the Kronecker delta). On the other hand, a geometrically natural
choice of [y7(0)] is [¢”(0)], which is the Fisher information matriz

e ‘ . 9
97(0) € B0 logpy ¥ logpg), O = 3 (2.14)

for (n;) or, equivalently is the inverse of the Fisher information matrix
9:j(0) = Eo[0; log pp 9; log po] (2.15)

for (0") [AKNO2]. This is an example of the so-called natural gradient method [Ama98].

2.3 Mean-field approximation for CBMs

In this section, first we give a brief introduction to the mean-field approximation
in statistical physics. Then we discuss some important points of the information
geometrical aspects of the mean-field approximation including both naive and higher-
order approximations for CBMs following [Tan00, AISO1]. We also briefly describe

the information geometrical viewpoint of the so-called Plefka expansion.

2.3.1 Introduction to mean-field approximation

Mean-field theory, dating back to Curie, Weiss and Ginzburg-Landau, is one of
the most common approaches to the study of complex physical systems. The basic
underlying idea is that the complicated interactions that each element of a complex
system is subjected to by its neighbors can be replaced by the interaction with an
effective (or mean) field. While mean-field approximation arose primarily in the field
of statistical mechanics, it provides an alternative perspective on the probabilistic
inference problem. For instance, it has more recently been applied for doing inference
in graphical models in artificial intelligence [JGJS99].

In magnetic materials the microscopic state of the system is supposed to be defined
by the values of local spin magnetizations. In many magnetic materials the electrons
responsible for the magnetic behavior are localized near the atoms of the crystal
lattice, and the force which tends to orient the spins is the (short range) exchange
interaction.

The most popular models, which describe this situation qualitatively are called
the Ising models. The microscopic variables in these systems are the Ising spins z;

which by definition can take only two values -1 or +1. The microscopic energy or the
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Hamiltonian H as a function of all the Ising spins is given by

H = —ZJijxixj — thi, (2.16)

i<j i
where J;; are the values of the spin-spin interactions and h is the external magnetic
field. In particular, physicists usually consider nearest neighbor models for example,
the ferromagnetic Ising model with J;; > 0 and the anti-ferromagnetic Ising model
with J;; < 0. It is a well-known fact that in statistical physics, the thermal equilibrium

state of a system is given by the Boltzmann distribution

P(x) = %eXp(—H;@), (2.17)

where T is the temperature® and
H (33)
_ E : (_ >
Z = 4 exp T

is a normalizing factor called the partition function. In spite of the apparent simplicity

of the Ising model, an exact solution (which means the calculation of the partition
function Z, expectations and the correlation functions) for the lattice system has
been found only for the one- and the two-dimensional cases in the zero external
magnetic field. In the higher dimensions one needs to use approximate methods.

One of the simplest methods is called the mean-field approzimation (see for example

EERXK.

o
: -
.

-0 -0 o 0-
- 0--0 -0
*--0 -0 O
- -0 00

Figure 2.2: Mean-field approximation

[PA87, HKPI1] for application to neural networks). In many, but not all, cases this

method gives the results which are not too far from the correct ones, and very often

*As mentioned in Section 2.1, in the sequel, we assume T = 1.
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it makes possible to get some qualitative understanding of what is going on in the
system under consideration. The starting point of the mean-field approximation is
the fact that the joint distribution function of the non-interacting system can be
factorized as the product of the independent distribution functions in the individual

sites of the spin system.

2.3.2 Naive and higher-order mean-field approximations for
CBMs

In this subsection, we derive the naive mean-field equation and discuss briefly
the higher-order approximations based on the Plefka expansion from an information
geometrical point of view. The complete description of the information geometrical
interpretation of Plefka expansion is presented in the Chapter 5 for the quantum
setting.

Let us now recall P,, the manifold of CBMs. Here, we treat the case that each
element is subjected to different external magnetic fields (in the physical interpreta-
tion) h; which were considered equal to h in (2.16). Suppose that we are interested in
obtaining expectations m; with respect to a probability distribution in P,. However,
when the system size is large, the partition function exp(¢(h,w)) is very difficult to
calculate and thus explicit calculation of the expectations m; is intractable. There-
fore, due to that difficulty, we are led to obtain a good approximation of m; for a
given probability distribution pj ., € Po.

First, we consider the subspace P; of P,. We parametrize each distribution in P

by h in order to distinguish from the parametrization in (2.2) and write as
pr(@) = exp { 3 bz —w(h) }, (2.18)

where

U(h) = Y tog{exp(Ri) +exp(~h) }.

Then, P; forms a submanifold of P, specified by w;; = 0 and h; as its coordinates.
The expectations m; := E;[z;] form another coordinate system of P;. For a given
pr, € Py, it is easy to obtain m; = Ej[z;] from h; because x;’s are independent. We

can calculate m; to be

_9p(h)  exp(hy) —exp(=hi) anh(h
i = oh;  exp(h;) +exp(—h;) tanh(h:) (2:19)
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_ 1 1 m .
hi= - log( i ml). (2.20)

The simple idea behind the mean field approximation for a pp,, € P2 is to use

from which we obtain

quantities obtained in the form of expectation with respect to some relevant p; € P;.

Now, we need a suitable criterion to measure the approximation of two probability
distributions. For the present purpose, we adopt the Kullback-Leibler divergence
(2.8). Given pp . € P, its e-(exponential) and m-(mixture) projections (see [ANO0O])
onto P; are defined by

(e def )
P = pro = argmin D(p;[|pn.w) (2.21)
PREP1
and
—(m def )
p( ) = Drim) = arg min D(phwllpn) (2.22)
PREP1
respectively, where
9 = arg min D(pz||pp,w) (2.23)
h=(h;)
and
™ = arg min D (ppw|ps)- (2.24)
h=(h;)

As necessary conditions, we have

0
a—;LiD(PBth,w) =0 (2.25)

and 5
aBiD<ph,prl_z) = 07 (226)

which are weaker than (2.23) and (2.24). But sometimes (2.25) and (2.26) are chosen
to be the definitions of e-, m- projections respectively for convenience. It can be shown
that the m-projection p{"™ gives the true values of expectations, that is m; = m, or
E(hw) (i) = Eg[z;] for pp, = p™ (see (2.9)). It should be noted that the approximation
process in Section 2.2 can be considered as the m-projection from P onto P;. On
the other hand, the e-projection p'® from P, onto P; gives the naive mean-field

approximation (see [Tan00]) which is explicitly given by

m; = tanh <Z wijmj —+ hl), (227)
J
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where m; = Ej[z;] for p = p©. From (2.27) and (2.19), it is clear that in the
mean-field approximation the effective fields of other elements j(# i) are replaced by
external fields called mean fields (see Figure 2.2).

Now we derive the naive mean-field equation for CBM. Recall that the equilibrium
distribution for CBM (2.2) is given by

p= « Phow(T) = exp { Z hiz; + Z wi;xix; — Y(h w)}, (2.28)
1<j

where

w(p) logZexp{thﬁwax a:J}

1<j

Now we define another function

o(p) = o(h,w) =Y wi; Eplwiz;] +Zh E,[x;] — ¥(p), (2.29)

1<j

which coincides with the negative entropy:

Zp ) log p(x (2.30)

In particular, for a product distribution p; € Py, using Ej;[x;] = m; , we have

b(pp) = ZKl zm) 1og(1 J;m) + (1 _Qm") log(1 _2mi)1‘ (2.31)

(2

The KL divergence between p € Py and p; € P; can be expressed in the following

form:

D(pipllp) = ¢(») + o(pr) — Zquhf% thEﬁ[%]

= U(p) + o(pr) — wammj thZ

= 4( )—i-lZ[(l—km-)lo (1 mi)—i—(l—fn»)lo (1_”“)}

= p 9 i) 108 i) 108 9

— Z W, MM, — Z h;m;. (2.32)

7
1<J

Now consider the e-projection (2.25) from p € P, onto p;, € Py, i.e.

o, Dwillp) = 0. (2.33)
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Noting that A and m are in one-to-one correspondence, we may consider instead

0
8—77_%17(%“]9) =0. (2.34)

Since 1(p) does not depend on m;, we obtain from (2.32) that
1 14+ m; _
j#i

i

where the second equality is from (2.20). Thus the naive mean-field equation is
obtained from (2.19) and (2.35) as

tanh ™! (m;) = > wim; + h; (2.36)
i
and this is usually written in the form (2.27).

Let us briefly discuss the higher-order mean-field approximations for CBMs using
the information geometrical interpretation of the so-called Plefka expansion. Recall
that the elements of P, are parametrized as pj,, by h = (h;) and w = (w;;). This
means that (h,w) forms a coordinate system of the manifold Py. When P; is viewed
as an exponential family, (h,w) turns out to be a natural coordinate system, while
the corresponding expectation coordinate system is given by (m,n) where m = (m;)
and n = (n;;) with m; = Eqw)z]) and n;; = Epw)(zi2;]) respectively. We now
define a third (or hybrid) coordinate system (m,w). The elements of P, are then
parametrized by (m,w), which we denote by p,, ., to avoid any confusion with py, .
Note that

Py = {pnw| (h,w) : free}

= {Pmw | (m,w) : free} (2.37)
and that
Do = Phw > Vi, m; = Eg ) [7:]. (2.38)
One may think of obtaining the expectations m; by solving the equation
0 D(Prm,w|pnw) = 0. (2.39)
om; ’ :

The difficulty in this approach is that it is hard to derive the stationary condition
explicitly because p,,,, is complex enough so that we cannot obtain an explicit ex-

pression for D(Pp, w||Phw) in terms of {m;}. On the other hand, when w = 0 in the
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first argument of D (P, wl||Phw), the equation (2.39) turns out to be

0

— DBmollphw) =0 2.40
5o Domollpi) (2.40)

which is nothing but the naive mean-field approximation discussed earlier.

The Plefka expansion was originally presented as a Taylor expansion of the Gibbs
potential [Ple82, Ple06]. The information geometrical interpretation of it is that to use
the Taylor expansion of the difference D (P ol|phw) — D(Pmawl|Prw) up to a required
order of w to derive more precise approximations of {m;}. For the detailed discussion
of the information geometrical viewpoint of the Plefka expansion, see Chapter 5.

We mention, for example, the second-order mean-field equation
i i
which was originally derived by a different method in [TAP77]. Some other higher-

order terms have been calculated in [NT97].



Chapter 3

A quantum extension of CBM

We present a possible quantum extension of CBM which is called the quantum
Boltzmann machine (QBM). Furthermore, a subfamily of the totality of QBMs is
defined which is called the set of strongly separable QBMs (SSQBMSs). A state renewal
rule is proposed for these states based on that for CBM. Note that, in this thesis, we
use the concepts of density operator, quantum measurement etc. without explicitly
describing their physical meaning and the interested reader is referred, for example,
to [NC02].

3.1 Definition of quantum Boltzmann machine (QBM)

Let us consider an n-element system of quantum Ising spins. Each element is
represented as a quantum bit (qubit) or quantum spin—% with local Hilbert space C2,
and the n-element system corresponds to H = (C?)®" ~ C*". Let S be the set of
faithful (strictly positive) states on H;

S={plp=p">0and Trp=1}. (3.1)

Here, each p is a 2" x 2" matrix; p = p* > 0 means that p is Hermitian and strictly
positive or positive definite respectively; and Trp = 1 shows that the trace of the
density matrix p is unity. Now corresponding to (2.6), an element of S is said to have

at most kth-order interactions if it is written as

Po = eXP{Z Gg)Xis + Z Z 9§f§tX¢sXﬁ +

i<j st

Y K X 00}

11 <--<if 81...5k

17
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k
= eXp{Z Z Z eg.)..ijsl...stim o Xijsj - @D(Q)} (32)

J=1 141 <-<ij 81...8;

with
»(0) = logTreXp{Z Z Z “ dys1os, Xis, - 'Xijsj}7 (3.3)
71=1 1< - <z]51 .85
where X;, = I907) @ X, ® [?0") ) = (9“ ). Here, I is the identity matrix

11...1551...8;

on H and X for s € {1,2,3} are the usual Pauli matrices given by

1 i 1
x = (" Xy = 0 ) X, = 01
10 i 0 0 —1

Letting Sy be the totality of states py of the above form, we have the hierarchy
§1C S C---CS,=38. Note that S; is the set of product states p; ® po ® -+ ® py.

Our main concern in the present chapter is Ss. In the sequel, we let h;s = 01(51 ) and
to rewrite (3.2) for k = 2 as

= exp{z thXzs + Z Z wzgsthsX]t ¢(h7 w)}? (34)

i<j st

(2)
Wijst = 92] st

where h = (h;s), w = (w;;st). The real dimension of Sy is 3n(3n — 1)/2 which gives
the number of parameters to specify a density operator pj, .

Corresponding to the classical case, an element of Sy of the form (3.4) is called
a quantum Boltzmann machine or a QBM in this thesis (see also [YN05, YNO6]),
although we have no quantum dynamics corresponding to the stochastic state change
of a CBM at present. Physically, a QBM simply means a general quantum state for
n-fold spins with at most second-order interactions which are arbitrary and determin-
istic, not random as in a spin glass.

Now, here we briefly discuss the set &7 for later use. The elements of &7 are

represented as pp o by letting w = 0 in (3.4). In the sequel, we write them as
7= exp { D hisXis — v(h) | (3.5)

by using new symbols 7 and h = (h;;) when we wish to make it clear that we are

treating &7 instead of S;. We have

n

n= @esw { X hex. i), 59

i=1
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where h; = (hy,)s and
VYi(hi) = logTrexp { Z hisXs}
= log{exp(||hil|) + exp(—|lhil|)} (3.7)
def

with ||| = />0, (his)?. Note that

1/)(71) = Ziﬂz(ﬁz) (3~8)

3.2 Strongly separable QBM (SSQBM)

3.2.1 Separability criterion and a state renewal rule

First, we review the state renewal process of the CBM. In Chapter 2, Section 2.1,
we mentioned that the probability distribution (2.2) is obtained as the equilibrium
distribution for the stochastic state renewal rule (2.1). The significance of this process
is its locality. That is, the random generation of data is simple and carried out by
each element based on the data sent from the other elements. The mathematical
essence of (2.1) is that it is the conditional distribution defined from (2.2). That is,

1  P(ay,.mi=1,000 1)
1+exp(=2L(z) Y. P(x1,..., 2 ..., 2,)
= P(.Z‘Z':].|l’l,...,IZ’_l,ZL’i_‘_l,...,xn).
This method to generate a random sequence X, Xo, ..., X, subject to P(z1,...,z,)

by the use of conditional distributions is generally called the Gibbs sampler (see
[GG84]) in classical mathematical statistics. The same idea is applied to a limited
class of QBMs.

Separability is a well-known concept in quantum information theory. For a state
p on the Hilbert space H = (C?)®", it is called separable if there exist {\;}7, C [0,1]

It i R

m

p= Z Mt @ @™, (3.9)

i=1
Separability is equivalent to the existence of finite sets X1, ..., &,,, a probability distri-
bution P = P(x1,...,2,) on Xy X -+ x X, and {7 |z; € X} € S(C?),i=1,--- ,n,
such that

p=> Pl)m, (3.10)
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where = (z1,...,2,) and 7, = e o
We can apply the method of Gibbs sampler to generate p in the form (3.10) as
follows:

State renewal rule:

(i) Choose i randomly.
(ii) Update z; € &; according to P(x; | X1, ..., Ti—1,Tit1, .-, Tn).
(iii) Set the state of i to 0,

It is obvious that, according to the Gibbs sampler, the state converges to p by re-

peating this process for sufficiently many times.

3.2.2 Strongly separable states and SSQBM

Definition 1. A separable state p of the form (3.10) is called strongly separable if

rD 7D =0 Vi, a2 € A (3.11)
This is equivalent to the existence of U = {u,...,u,}, where each u; is a unit
vector in R3, and a probability distribution P on {—1,+1}" such that
p= Y Pla,... )t @ @, (3.12)
T1,..0sTn

where for any w = (uq, us, uz) we define

w 1 1+ Uus Uy — 7:7,62
2 |up +iuy 1 —us
1
= 5([ + Ule -+ U2X2 —+ U3X3)
T = mv=1-x"

Note that 7% = (7} 7%,) represents a projective measurement (projection-valued
measure, PVM) where 7}* and 7%, are mutually orthogonal projection operators sat-
isfying 7{* + 7%, = [. For a spin—% particle, this PVM can be physically realized by
a Stern-Gerlach measurement of direction u. We call i = {u;} a frame of a strongly
separable state p.

Combination of steps (ii) and (iii) in the state renewal algorithm is equivalent to

setting the quantum state of ith element to
@ = Pl |@)n" + P(—1|a)n™
= T},
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where (& = (21,...,%,...,2,)), Tr is the partial trace over n — 1 qubit systems
except for ith system, o
) def  T@fTs
and 7Ty = T ® -~ ® 1 ®--- @ my where [ is in the ith position. Note that p is the
post measurement state of the target state p for the measurement results .
Next theorem gives the necessary and sufficient conditions for a state of the form

(3.2) to be strongly separable.

Theorem 1. A state p represented in the form (3.2) in terms of the parameters

11...151...55

) is strongly separable with frame U = {w;} iff there exists (9(]')/ -j) such

Q1.4

that Vj,Vi; < --- < Vz’j,‘v’sl, . ,VSJ',

97?{.).‘1:]'81...‘9]‘ = gff),l]ullsl e uijsj’ <313)
where u; = (Uﬂ, U;2, Uig).
Proof. First assume that (3.13) holds. Substituting, (3.13) to (3.2), we have

p = exp[z DD SXilsl...Xijsj—w(G)} (3.14)

J=1 41 <-<ij5 81...8;
— exp[z S 69, Wl,,.xijuij—ip(e)], (3.15)
J=1 11 <-<i

where for any 7 and u = (u,)?_; we define

Xiu déf ZUSXZS
® <ZU5X5) R T

= I® X, 01
with X, & Yo us Xy =7 — . Now, let for = (z1,...,2,) € {—1,+1}",

k
=> > eg}j_ﬂ.jxh...x,.j. (3.16)

j=1 i1 <<

Then

Y f@)rt e e = Z > o7 Zx T @ QT

T J=1 i1 <<y

- Z Z 911 g l1u21-"Xijuij- (317)

J=1 i1 < <1y
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Therefore, from (3.15) and (3.17)

p = exp [Z fl)m @ @i — w(e)l

~ 0| (@ - v} oo

= Y exp|f(@) - v(O)] 78 @@

= i Plx)m! @ --- @ mpr, (3.18)

where

P(@) = exp[f(x)— ¥ (6)]
— exp[z Z 07, iy —(0)]. (3.19)

Therefore p is strongly separable with frame ¢. Conversely, let us assume that p of the
form (3.2) is strongly separable with frame ¢. Then, by definition, p is represented as
(3.12) by a probability distribution P on {—1,+1}". Since p is assumed to be faithful,
P(x) is positive for all , and therefore P can be represented as (3.19) with £ = n for
g(j)’

some 0" = (0, ZJ) Then, tracing back the previous argument in the reverse order,

we have

p = ZP(&))W;? Q- Q@my"

T

= exp ZZ Z 921 i Ty - o Ty T g;...w;;—zﬁ(e)}

-z j=1d01< <zJ

= exp 2”: Z Hff iy Xy - Xijuy, — w(e)}

-j—l i< <iy

= exp Z > Z elf% Uiy s, - .uijijm...xijsj—qp(e)} (3.20)

—j=1 11 <<y 81, ,8;

Comparing (3.20) with (3.14), we have

9 sy =0ty (1S < B

11...1551...8;

and
09 =0 if j > k.

11...15

which establishes the result. O
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Let us now define S§’(U) as the set of strongly separable states p € S with frame

U and S, (U) o S'(U) N'Si. Then we define the elements of the S5(U) to be the

SSQBMs. First, we give a corollary of Theorem 1.

Corollary 1. A QBM pg,0 = (his, wijst), of the form (3.4) is strongly separable with
frame U = {u;} iff there exists 0" = (hj, w;;) such that Vi, j,Vs,t,
his = héuis, Wijst = nguisujta (321)
with w; = (W1, Wiz, w;3), which means that py is represented as (3.12) with
P(x1,...,1,) = exp { Z hix; + Z wi;rir; —P(h, w’)}. (3.22)
i i<j
In particular, if h; # 0,V1, the necessary and sufficient condition for a QBM py to be

strongly separable (with some frame) is that

.o T
Vi,j, Wi o< hihg, (3.23)
where
hix Wij11 Wij12  Wij13
hi = |hia|, Wij = | Wij21 Wij22 Wij23
i3 Wij31 Wij32 Wiy33

and T denotes the matrixz transpose.
Proof. Obvious from the Theorem 1. O]
Next, we give a state renewal rule for the SSQBM in the following theorem.

Theorem 2. When the target state of a SSQBM is represented by (3.4) and (3.21),

the state renewal rule in Subsection 3.2.1 is carried out, starting from an arbitrary
initial state p € S and arbitrary initial data * = (z1,...,x,) € {—1,+1}", by the

following procedure.

(i) Choose i randomly.

(i1) Using data & = (z1,...,%i 1, Tis1,- .-, T,) available at the time, renew the state
of the ith element to

3
1

with

v; = (Vi1, Vi2, v;3) = tanh (Z w;jxj + h;) u,;.

J
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(i1i) Perform the measurement % = {m" ©} to the ith element and update x; by

the measurement outcome.

Proof. For a SSQBM, the steps (ii) and (iii) of the state renewal rule in Subsec-

tion 3.2.1 and the following steps (i)’ and (iii)’ are same:
(ii)" Update x; according to

1 with probablhty m = )\,

—1 with probability 1 — A.

Uz

(iii)" Set the state of the ith element to =} if x; = 1 or to 7%} if z; = —1.

On the other hand, for the state renewal rule in the statement of the theorem, we can

show by some calculations that the updated state is represented as (see Figure 3.1)
o =Amt+ (1= N)m™. (3.26)

Noting that, according to the von Neumann postulate for the projective measurement
= {mi", 7%}, the post measurement state m3(oc mi“o;my) depending on the
measurement result x;, we see the equivalence of (11) and (iii)’ to (ii) and (iii) of the

present state renewal rule. O]

o, Qe
Oy \@/2@
oi = A + (1= N7y

Figure 3.1: State transition process for SSQBM



Chapter 4

Geometry of quantum exponential
family and the space of QBMs

This chapter presents a discussion on the information geometrical structure of
the space of QBMs. First we introduce a quantum exponential family and discuss
its geometrical structure in general. Then it is shown that the space of QBMs can
be understood as one family in a hierarchical structure of exponential families. Fur-
thermore, the present chapter discusses the approximation processes for QBMs and
SSQBMs. Finally, we study the parameter estimation of SSQBM.

4.1 Quantum exponential families

We introduce a quantum version of exponential family (2.4) in the following. Let
‘H be a finite dimensional Hilbert space and denote the totality of faithful states on

‘H by
S={plp=p">0and Trp=1}.

Suppose that a parametric family
M={pg|0=();i=1,....m} CS (4.1)

is represented in the form

po=exp{C+ > 0F —v(0) }. (4.2)
i=1
where F; (i = 1,...,m), C are Hermitian operators and () is a real-valued function.

We assume in addition that the operators {Fi,..., Fy,, [}, where I is the identity

25
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operator, are linearly independent to ensure that the parametrization 6 — py is one
to one. Then M forms an m-dimensional smooth manifold with a coordinate system
0 = (6"). In this thesis, we call such an M a quantum ezponential family*, or QEF
for short, with natural (or canonical) coordinates @ = (0°). Tt is easy to see that S is
a QEF of dimension (dim H)2 — 1. Note also that for any 1 < k < n the set S, of
states (3.2) forms a QEF, including Sy of QBMs and S; of product states.

If we let

0:(0) < T [po F). (4.3)

then n = (;) and 6 = (6%) are in one-to-one correspondence. That is, we can also
use 7 instead of @ to specify an element of M. These (7;) are called the expectation
coordinates of M.

In particular, the natural coordinates of Sy are given by (h,w) = (his, w;js) in

(3.4), while the expectation coordinates are (m, pt) = (mys, ftijst) defined by
mis = Tr{pnw Xis] and s = Tr[ppw XisXjt)- (4.4)

On the other hand, the natural coordinates of S; are h = (h;,) in (3.5), while the

expectation coordinates are m = (1m;,) defined by
Mis = Tr[TEXis]- (45)

In this case, the correspondence between the two coordinate systems can explicitly

be represented as

_ awl<lj[/l) 18 7
= 20 D 1) (4.6)
Ohis [
or as _
_ Ms
his = 7—Zstanh_1(||mi||), (4.7)
||m,~||

_ f —
where [|mi]| € /3, (ma,)2.

4.2 A metric and affine connections

In classical information geometry (see [AN00]), a Riemannian metric, called the

Fisher metric, and a one-parameter family of affine connections, called the a-connections

*It should be noted, however, (4.2) is merely one of the possible definitions of quantum exponential
family. Our definition has the advantage that it is closely related to the quantum relative entropy
(4.25) and is completely analogous to the classical exponential family from a purely geometrical point
of view. On the other hand, it does not well fit to the framework of quantum estimation theory,
which needs another definition of QEF such as the one based on symmetric logarithmic derivatives
(see Section 7.4 of [AN00]).
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(o € R), are canonically defined on an arbitrary manifold of probability distributions.
In particular, the (o = 1)-connection and the (v = —1)-connection, which are also
called the e-connection and m-connection respectively, together with the Fisher met-
ric have been shown very useful in many problems in statistics and other fields. In the
quantum case, on the other hand, we have infinitely many mathematical equivalents
of the Fisher metric and the a-connections including the e- and m-connections defined
on a manifold of quantum states. We introduce, in the present Section, an example of
quantum Fisher metric and e-, m-connections, and describe their properties, mainly
following [AN00]. Our choice of information geometrical structure has the advantage
that it is naturally linked with QEF and quantum relative entropy. For general terms
of differential geometry such as manifold, Riemannian metric and affine connection,
refer, for example, to [KNG3].

Let H be a finite dimensional Hilbert space. We consider a d-dimensional para-

metric family

M={pg|0=(0",....,00)c0)}, OCR?

of faithful states on H. Then, # = (6%); i = 1,...,d can be considered as a coordinate
system and M becomes a submanifold of the manifold of faithful states S on H. In
the following, we discuss the information geometrical structure of M including the

case M = S. As a first step, a Riemannian metric g = [g;;] is defined on M by

g;(0) = g(9,9;), where ;%= 6{;
1
= /TY[Pé\(ailogpe)Pé_A(ajlogpa) dA (4.8)
0

= Tr[(0ips)(0;1og po)].

This is a quantum version of the Fisher information metric and is called the BKM
(Bogoliubov-Kubo-Mori) metric. Next, two torsion-free affine connections, the ezpo-
nential connection (or e-connection for short) V() and the mizture connection (or

m-connection for short) V™ are defined on M as follows:

L.(0) < g(V5)9;,01) = Tr[(9,0; 1og po) (Dps)] (4.9)
and
L (0) = g(V57d;,0,) = Te[(9,0;6) (9 log pa)], (4.10)

where g is the BKM metric. Note that both V(® and V™) are mappings (covariant
derivatives) which map two vector fields X,Y to Vg?)Y and to Vg;n)Y respectively.
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The coefficients F(e)k give a coordinate representation of the connection V() relative
to the metric g, while F( defined by

Vo, _Zﬁe By (4.11)

purely represent V(®). They are related to each other by
() _ (e)l
Lijge = Z Ui gk
!
Similarly, we have F " for V(™ such that
viro; =y i oy (4.12)
k

and
(m)
Iy = Z I g

These two connections V() and V(™ are dual with respect to the BKM metric
(4.8) in the sense that, for any vector fields X,Y, Z,

Xg(Y.2) = 9(V{Y. 2) + (Y. V(" 2), (4.13)
or equivalently in the component form

Bigjr = T\ + 10 (4.14)

ij,k ik,j

This kind of duality for affine connections plays a key role in classical and quantum

information geometry. Another notable relation between the two connections is

F( ) I«@

i,k T

= Tijk, (4.15)
where

Tk (0 dﬁf 2 Re // Tr P (0i1og pg) py " (9;10g pa) py (O log pg)}du d\.  (4.16)

0<r<Ai<1

4.3 Geometrical structure of the space of QBMs

We have shown in Section 4.1 that the totality of QBMs form a QEF. In this
section, we describe the geometrical structure of QEF including the space of QBMs.

Let us now consider the case when M is a QEF (4.2) with natural coordinates 6 =
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(6"). Tt is then easy to check from (4.9) that the coefficients Fg;)k

or I‘S)k of the e-
connection are all zero. In the context of differential geometry, this means that M is
flat with respect to the connection V) (e-flat, for short) and § = (#%) forms an affine
coordinate system for V) (e-affine coordinate system, for short). On the other hand,
the coefficients Ffjm,z of the m-connection do not vanish with respect to the natural
coordinates § = (). However, one of the remarkable consequences of the duality
(4.13) is that, if one of the two connections V(¢ and V™ is flat, then the other is
also flat, which is referred to as the dually flatness of the manifold with respect to the
information geometrical structure (g, V(®, V™). In the present case, the connection
coefficients of V™ with respect to the expectation coordinates n = (7;) defined by
(4.3) turns out to identically vanish. This means that M is m-flat with an m-affine

coordinate system (7;). Moreover, we have

9 0 ; L ,
g (@, 0_77]) =0] (=1if i=7j 0 otherwise) (4.17)
and o ”
=0 = 4.1
ni By 0 o’ (4.18)

where 1 given in (4.2), is regarded as a function M — R by ¢¥(py) = ¥(6), and
¢ : M — R is defined by the relation

3(p) +1(p) =Y m(p)0'(p), Ype M. (4.19)
Note that equation (4.6) is an example of the first equation in (4.18). It can also be
shown that
o(p) = —=Tr[pC] = S(p), (4.20)
where
S(p) = = Tr[plog ) (4.21)

is the von Neumann entropy. In particular, for the QEF S, of states (3.2), we have
C' = 0 and hence ¢(p) = —S(p). We note that the existence of m-affine coordinates
n = (n;) and functions v, ¢ satisfying the relations (4.17), (4.18) and (4.19) is ensured
as a general property of dually flat space (see Theorem 3.6 in [AN00]), although it is
not difficult to directly verify these relations for a QEF (4.2).

Finally, let us rewrite (4.17) into a form which will be useful in later arguments.
Noting that (4.17) is written as

o 9 an,
(3 3m,) = .
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and that { <8%_> } form a basis of the tangent space 7,(M), we have
7 p

0 '\ o /
g((%i)p,a> —dn, VI € T,(M). (4.23)
Similarly, we have
0 '\ _ alpi /
g ((am)p,a> — 90 VI €T, (M), (4.24)

although we use only (4.23) in this thesis.

4.4 Geometry of quantum relative entropy

In this section, we focus on the quantum relative entropy

D(pllo) < Tr[p(log p — log )] (4.25)

for two density operators p,oc € M and describe its properties related to the dually
flat structure (g, V(®, V) of a QEF M as the continuation of the previous section.

First, we note that the relation
D(pllo) = ¢(p) + (o) = > _mip)0'(0) (4.26)
holds for any p, 0 € M with ¢ and ¢ defined in (4.18) and (4.19). From this, we have

D(pllo) + D(o||7) — D(pllT) Z{m a)HO'(r) — 0'(0)}. (4.27)
Moreover, it can be shown that (4.27), with the positivity

D(pllo) =20, D(pllo) =0 iff p=o, (4.28)

completely characterizes the quantum relative entropy D.
Let us clarify the geometrical meaning of the right hand side of (4.27). In gen-

eral, given a coordinate system &’ and an affine connection V with coefficients I'¥., a

1)
geodesic with respect to V is defined by the second order ordinary differential equation

% +Zr £igi = . (4.29)
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If, in addition, £ is an affine coordinate system with respect to a flat V, the equation

becomes £F = 0 or equivalently

& =t + (1 —1)&). (4.30)
In particular, an e-geodesic in the QEF (4.2) is given by

0; = 0, + (1 — 1)6;. (4.31)
This turns out to be equivalent to

log py = tlog po + (1 — t)log p1 — ¥(1),

where () is the normalization constant. In other words, an e-geodesic of a QEF is

itself a one dimensional QEF. On the other hand, an m-geodesic is represented as
N = tnoi + (1 — ). (4.32)
If we consider the case M = &, the m-geodesic can be written as
pr =tpo + (1 —t)p1. (4.33)

Such a family of states {p;} is called a (one dimensional) mixture family, which is
related to the origin of the name “mixture connection”, but note that (4.32) is not
generally represented as (4.33) unless M = S.

Let 7 : [0, 1] — M be an m-geodesic such that v(0) = o,7(1) = p and 6 : [0,1] —
M be an e-geodesic such that 6(0) = 0,6(1) = 7. Then, from (4.31) and (4.32) we

obtain

=S nle) ~m(@)} (5, € TolM) (4.39)

and

Z{e — 0 (%L e T,(M). (4.35)
Hence, from (4.17) we have

9 Z{m o)HO'(r) = 0'(0)} (4.36)

which coincides with the right hand side of (4.27). We thus obtain the following

theorem:
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Theorem 3. (Pythagorean relation) Let p,o,7 be three points in the manifold
M such that the m-geodesic connecting p and o is orthogonal at o to the e-geodesic
connecting o and T with respect to the BKM Riemannian metric (see Figure 4.1).

Then, the generalized Pythagorean relation
D(pllo) + D(o||7) = D(pli7) (4.37)

holds.

m-geodesic

e-geodesic

Figure 4.1: Pythagorean theorem D(p||o) + D(o||7) = D(p||7)

Next, we define the m- and e-projections. Let M be a QEF of the form (4.2), and
N be a smooth submanifold of M. For an arbitrary point p € M, let D(pl|-)|, be a
function on N defined by N’ 3 ¢ +— D(p||o). When this function is stationary (i.e.,
the derivative is zero for every direction in ') at a point o € N, we say that o is
an m-projection of p onto N. Similarly, when D(-||p)|, is stationary at o € N, we
say that o is an e-projection of p onto N'. Then, we have the following two theorems

which are closely related to Theorem 3.

Theorem 4. The necessary and sufficient condition for o to be an m-projection (resp.
e-projection) of p onto N is that the m-geodesic (resp. e-geodesic) connecting p and
o is orthogonal to N at o (see Figure 4.2).

Theorem 5. If N is e-autoparallel (resp. m-autoparallel) in M in the sense that N

forms an affine subspace in e-affine coordinates (6") (resp. m-affine coordinates) of
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M, then an m-projection (resp. e-projection) is unique and attains the minimum of
D(p||)|y (resp. D(:||p)|y)- Note that an e-autoparallel submanifold is nothing but a
QFEF.

Remark 3. For proofs of the Theorem 3, Theorem 4 and Theorem 5, refer to [ANO0].

Figure 4.2: Projection o from p € M to N/

Finally, we note another property of D for later use. We have the Taylor expansion
of D(pllo) (see [ANOO], p 55) as

of 1 AT | oo
ZXMWYQ§§ZQAMA0AW+EE:MM@MﬁAWAW+~~, (4.38)
ij ijk

where A§F & (o) —0'(p). Here, the second-order coefficients g;; are the components
of the BKM metric and the third-order coefficients h;j;, are determined from g;; and

the connection coefficients by

+Tm e (4.39)

def e e
hijk = Oigjr + iy, =1 ik,j ki

gk ij,k

where the second equality is due to (4.14).

4.5 Approximation processes for QEF and SSQBM

The purpose of this section is to discuss the approximation processes for QEF and
SSQBM corresponding to that for CBM. We also study the parameter estimation of



4.5 Approximation processes for QEF and SSQBM 34

SSQBM. Recalling that the approximation process for the CBM is well understood
within the general framework of exponential families, as mentioned in Section 2.2, we
consider the corresponding problem' for QEF (see Figure 4.3). Then the following

theorem is obtained as in the classical case.

Figure 4.3: Approximation process for QEF.

Theorem 6. Suppose that we are given a density operator T € S and a QEF M =
{pe} C S of the form (4.2), and consider the minimization meinD(THpg), where D
denotes the quantum relative entropy defined in (4.25). Then,

0" = argemin D(7||ps) (4.40)
uf
mi(07) = Tr[r K], Vi. (4.41)
The gradient algorithm for computing 0* is represented as
AN N
where

AGTE —e > y(0)0;D(7]|po)

E
= ¢ Z ¥ (O Te[rF5] = n;(0)}- (4.42)

It should be noted that the approximation process for QBM can be considered as the m-
projection from S onto S3. On the other hand, the naive mean-field approximation discussed in

Chapter 5 can be understood as the e-projection from Sy onto Sy
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Let us now consider the geometrical structure of the space of SSQBMs. Following
the definition of SSQBM in Section 3.2, we have natural diffeomorphisms S’ (i) ~ P
and S, (U) ~ Pr. We give the following theorem which describes the information

geometrical structure of Sy (U).

Theorem 7. For an arbitrary frame U, S, (U) is a QEF and therefore is autoparallel
in S with respect to the e-connection (e-autoparallel). The induced information geo-
metrical structure (g, V©, V™) on S, (U) is dually flat and is equivalent to that of
P

Proof. Obvious from the fact that an element of S; (i) is represented as (see the proof
of Theorem 1 in Subsection 3.2.2)

p = Z P(xy,...,2,)T @ - @7

— exp[z o0 Xy - X, — 6(0) (4.43)

J=1 i1 < <1y
by P € Py and 6 = (69 ). 0

We now revisit the approximation process for SSQBMs (see Figure 4.4). Suppose
that we are given a density operator 7 € S, and consider the problem of approximating
7 by a SSQBM in S5(U) = {py }, where U = {w;} is an arbitrarily fixed frame. Let

/defZﬂ T ZTI“ ] 7 e S'(U),

where 7% = 7% ® -+ @ n¥% for @ = (x1,...,2,). Then we obtain
Tr[r74] = Tr[r'74], Vx (4.44)
from which it implies
Tr[r(logo —log 7')] = Tr[7'(logo — log 7')], Vo € S'(U). (4.45)
The above equation is rewritten as Tr(7 — 7’)(log o — log 7') = 0, which equals to
D(7||7") + D(7'||o) — D(7||o) = Tr(7 — 7")(log o — log ") = 0. (4.46)
Thus we obtain the Pythagorean relation

D(rllo) = D(zll7) + D(v'[lo) (4.47)
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for any o € S'(U), which implies

7' = argmin D(7||0). (4.48)
ceS'(U)

Let us now consider a SSQBM
Por = Z Py (w)frg (P@/ c 7)2) (449)
and
7= qd@i  (deP). (4.50)
By replacing o by pg in (4.47), we obtain the following Pythagorean relation
D(rllpor) = D(7]I7") + D(7'll por)-

This implies
arg min D(7||pe') = argmin D(7'|| per)
0’ o'

where D(7'||per) is nothing but the KL divergence D(q'||Py). This leads to the fol-

Figure 4.4: Approximation process for SSQBM.

lowing theorem.
Theorem 8. The approximation process to find

0" = argmin D(7||pe'),
9/
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where 0" = (W', w'), is decomposed into two parts:

7' = argmin D(7||o)
cesS'(U)
and
0" = argmin D(7'||py).
9/

The second part turns out to be equivalent to the approximation problem for the CBM
addressed in Section 2.2 by Sy(U) =~ Ps.

Finally, in this section, we consider the parameter estimation of SSQBMs. Sup-
pose that we are given N independent quantum systems, each of which is a SSQBM
por (0" = (hi,wj;)) with frame U and that we perform a projective measurement m,

on each SSQBM given by the PVM

def [~
Ty = g Yoe {1413, (4.51)
where 7Y = r¥1 @22 @7l for & = (x1,...,2,), to yield aset of data {x(1),...,x(N)}.
Let P denote the empirical distribution of {a(t)}Y, and let
#EN Pa)RY. (4.52)

Then, recalling that an SSQBM py € S5(U) is represented as
po =Y _ Py (m)74 (4.53)

by a CBM Py, we have

0 = O p(x1), ..., z(N))

= argerlnax Pgl(iB(l))P@/(iL’(?)) s Pg/(il?(N))
= argellrnin D(P||Py)

= argmin D(7||py ). (4.54)
9/

This means that the MLE for the data is given by the approximation process for 7.



Chapter 5

Information geometry of mean-field

approximation for QBMs

This chapter discusses the information geometrical interpretation of the mean-
field approximation for QBMs. First we derive the naive mean-field equation for
QBMs using the concepts of e- and m- projections. Then the higher-order corrections
are discussed noting the correspondence of the coefficients of Plefka expansion to
the information geometrical quantities of a Taylor expansion of the quantum relative

entropy.

5.1 The e-, m-projections and naive mean-field ap-

proximation

In this section, we derive the naive mean-field equation for QBMs explicitly from
the viewpoint of information geometry. Suppose that we are interested in calculating
the expectations m;; = Tr[pp ., Xis| from given (h,w) = (hs, w;js). Since the direct
calculation is intractable in general when the system size is large, we need to em-
ploy a computationally efficient approximation method. Mean-field approximation
is a well-known technique for this purpose. The simple idea behind the mean-field
approximation for a p,, € Ss is to use quantities obtained in the form of expectation
with respect to some relevant 7; € §;. As explained in the Chapter 1, T. Tanaka
[Tan96, Tan00] has elucidated the essence of the naive mean-field approximation for
classical spin models in terms of e-, m-projections. Our aim is to extend this idea to
quantized spin models.

In the following arguments, we regard S; as a QEF with the natural coordinates

38
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(0%) = (his,w;js) and the expectation coordinates (1) = (s, fijst) (see (4.4)),
where « is an index denoting a = (i,s) or a = (4, 7, s,t). First, let us consider the
m-projection onto &; and show that it preserves the expectations m;,. Note that
since &7 is e-autoparallel in Sy, the m-projection is unique and attains the minimum
of D by Theorem 5. Suppose p = pp € Sz is given and 7 € &; be its m-projection.
Let v be the m-geodesic such that v(1) = p,v(0) = 7. Then, from (4.32) we have

1a(y(1)) = t1a(p) + (1 = ) 1a(7), (5.1)

and, in particular,
mis(Y(t)) = tmis(p) + (1 — 1) mis (7). (5.2)

Hence, substituting 0° := h;,, n; := mys, @ := %(0) and p := 7 into (4.23) we get

! (<a§i5)ﬂ(0)) - w

T.(S)) = span{ ( 625)7}, (5.4)

it follows from (5.3) and Theorem 4 that m;s(p) = mys(7). This means that the

expectation values do not change if we use the m-projection.

= mys(p) — mis(7). (5.3)

t=0

Since

Next, we show that the naive mean-field equation is derived by considering e-
projection. Suppose that 7 = 7, € & is an e-projection of p = pp., € Sz onto Sy,
and let v be the e-geodesic such that v(1) = p,v(0) = 7. Note that from (4.31)

WG| s

At |, 0%(p) — 0°(7), (5.5)

%Z(t)) = his(p) = his(1) = his — Ris (5.6)
dwu(0(B)]  _ - )

Q. e Wijst(p) = Wijse  since  wjjs(T) = 0. (5.7)

Now, recall that (m;,) defined by (4.5) form a coordinate system of Sy, so that

T.(S)) = Span{ <8zis>f}is' (5.8)
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Hence it follows from Theorem 4 that, Vi, s,
0 =y (7(0), (%ﬁ))
e I (CORCRN
_ Za: de&g“” y ( Lz ). (fom (423))

amis
= St TS

= his - his + § Wiksu My + E wjitsmjt

(i<)k,u (i>)g,t

(since my; = My and fjg, = MMy, o0 Sy)

= his— his + g WijstMjt,

jit
where the last equality follows by letting

def def

Wiist = 0 and wzgst - wgzts (Z > ]) (59)
We thus obtain
his = his + Z WijstMjt- (5.10)
it

Both (4.6) (or (4.7)) and (5.10) together give the naive mean-field equation for QBMs.
It should be remarked that this naive mean-field equation may have several solutions
{his} for a given set of {his, wijs:} as in the classical case, which correspond to the
fact that e-projection onto an e-autoparallel submanifold is not unique in general.
In this section, we have shown some properties of m- and e-projections based on the
geometrical characterization given in Theorem 4, but note that the same properties
can also be derived in several different ways; for instance, we can use the relations
(4.18)-(4.19) and (4.26) for ¢ and ¢ to derive them as was shown for the classical

case in Subsection 2.3.2.

5.2 Plefka expansion and higher-order mean-field

approximations

Although the naive mean-field approximation is used extensively as a common

tool to compute characteristic quantities of multi-particle systems, it is necessary
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to consider higher-order mean-field approximations to improve the accuracy in some
situations. In this section, we discuss a method to derive higher-order mean-field
approximations which utilizes a Taylor expansion of the quantum relative entropy.
This coincides with the Plefka expansion of the Gibbs potential as pointed out at the
end of the Section. We elucidate the correspondence of the coefficients of the Taylor
expansion to the information geometrical quantities such as the metric and the e-,
m-connections.

We start the discussion of higher-order approximations by recalling that the ele-
ments of S, are parametrized as pp,, by h = (his) and w = (w;js). This means that
(0%) = (h,w) forms a coordinate system of the manifold S,. In viewing Sy as a QEF,
(h,w) is a natural coordinate system, while the corresponding expectation coordinate
system is given by (1) = (m, u) with m = (m;s) and n = (1;;5¢). Let us now define
a third (or hybrid) coordinate system (&%) o (m,w). The elements of S, are then
parametrized by (m,w), which we denote by p,., to avoid confusion with pj, . Note
that

So = {pnw | (h,w) : free} = {pmw | (M, w) : free} (5.11)

and that
P = Phaw = Yi,Vs, mys = Tr[pp,Xis)- (5.12)

For an arbitrarily fixed w, a submanifold of S, is defined by
Fw) Y {ppw | b : free} = {pmaw | m : free}. (5.13)
As a special case we have

F(0) ={pno| h:free} = {pmo|m: free} =&

which is the manifold of product states. We see that the family {F(w)},, forms a

foliation of &y as

S = Flw). (5.14)
Similarly, for an arbitrarily fixed m we define

A(m) o {Pmw | w : free}
= {pe S |Vi,Vs, mis = Tr[pXi]}, (5.15)

which yields another foliation of Sy as

S, = Alm). (5.16)
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These foliations have several special properties. First, for any w, F(w) is defined
by fixing w which is a part of e-affine coordinates (%) = (h,w) of S;. This implies
that F(w) is e-autoparallel in Sy in the sense mentioned in Theorem 5. On the other

hand, each A(m) is m-autoparallel in Sy. Furthermore, Yw, ¥m,
F(w) L A(m) at o € F(w)NA(m). (5.17)

To see this, we note that the tangent spaces of F(w) and A(m) at o are given by

T, (F(w)) = Span{ <8is>a}is (5.18)

and

T, (A(m)) = Sp&n{( 0 )U}jm. (5.19)

Mjktu

0 _9
Oh;s’ alj'jktu

is zero from (4.17), which proves (5.17). These properties mean that {F(w)}, and

The inner product ¢ < ) is a special case of ¢ (&%’ %) with a # (3, hence

{A(m)}, jointly give an example of mutually dual foliations (see Figure 5.1) defined in
[ANOO] (pp 75-76). It is now easy to see from Theorem 3 that for any points p € A(m)

Figure 5.1: Mutually dual foliations of S;. Here, “e-a.p.” and “m-a.p.” stand for

“e-autoparallel” and “m-autoparallel”, respectively.

and 7 € F(w) with the intersecting point o € A(m)NF(w) the Pythagorean relation
(4.37) holds. We also note that, for any w and m, both F(w) and A(m) are dually
flat with respect to their e-, m-connections and the BKM metrics. This is obvious for
F(w) because F(w) itself is a QEF. On the other hand, since .A(m) is m-autoparallel
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in Sy which is m-flat, we can easily see that A(m) is also m-flat, and hence is dually
flat as mentioned in Section 4.3. Actually, (p;j5:) and (w;js) restricted to A(m) turn
out m-affine and e-affine coordinate systems respectively.

Let us now restate the problem which motivates both the naive mean-field approx-
imation and its higher-order extension. Given h = (h;s) and w = (w;;s) arbitrarily,
consider the problem of calculating the expectations Tr[py ., X;s] or their approxima-
tions from (h,w). From

. 0 . . . .
Vi, Vs, —‘D(pm,prh,w) =0 = D(pmwllprw) = H}r},nDaom’,prh,w)

Omis

= P = argmin D(o||ppw) = Phow
ceF(w)

= Vi, Vs, mis = Tr[ppuXis),

where the last equivalence follows from (5.12), we have the expectations m;s as the

solution of the equation

0
amis

Of course, this method is practical only when the relative entropy D(pm wl|phw) is not

D(ﬁm,w”ph,w) =0. (5'20)

too complicated as a function of the variables m = (m;,), which cannot be expected
in general when n, the number of elements in the system, is large. On the other hand,
if we let w = 0 in the first argument of D(pyu||pnw), then the resulting D(pm ollpn.w)

becomes the sum of simple functions of m = (m;s), and hence the equation

0
8mis

D(pmollpnw) =0 (5.21)

is much more tractable than the original one in (5.20). When ||w|| is sufficiently small
so that D(pm,wl|phw) is well approximated by D(pm,ol|pnw), the solution of (5.21) will
give a good approximation for the true expectations. This is nothing but the idea
of naive mean-field approximation. Actually, equation (5.21) means that p,, o is an
e-projection of pp,, onto F(0) = Sy, which turns out to be equivalent to (5.10) as
shown in the previous Section.

Now that the accuracy of the naive mean-field approximation depends on how
close the function D(pp.uwllprw) is to its substitute D(pmollpnw). Therefore, it is
natural to expect that the approximation can be improved by properly retrieving
the difference D(pmollphw) — D(Pmwllprw) up to a certain order of w. This is the
information geometrical interpretation of the idea due to Plefka [P1e82, Ple06], and we
call the expansion of the difference with respect to w the Plefka expansion following

Tanaka [Tan00] who originally gave a similar interpretation in the classical case.
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From the information geometrical viewpoint, the gist of this approach is the fact that
the Pythagorean relation (4.37) holds for the three points pp ., Pmw and pmo (see
Figure 5.2) so that we have

D(ﬁm,OHPh,w) - D(ﬁm,w”ph,w) = D(ﬁm,OHﬁm,w)' (5'22)

The problem is thus reduced to expansion of D(py, 0l fm.w) With respect to w. Noting

D(ﬁvn,O‘mm,w)

Figure 5.2: Pythagorean relation D(ﬁm,ouph,w) = D(ﬁm,()”ﬁm,w) + D(ﬁm,prh,w)

that p,, 0 and py, ., are points on the manifold A(m) for which the coupling coefficients
w = (w;js) form a coordinate system, the expansion formula (4.38) with (4.39) is

applied to yield the Plefka expansion

. 1 1
D(pmollpmw) = 5 > grywrw; + 5 > hpwrwywg + - (5.23)
7 IJK
with
hrjx = Orgsr + Ft(]e[)(J = F%)K + F?;?,J + Ff,el)ﬂ, (5.24)

where the indices I, J, K represent quadruplets of indices such as (i, j, s, t). Here, gy,

F%)  and F?}OK are respectively the components of the BKM metric, the e-connection

and the m-connection of the manifold A(m), and d; denotes aiw, for the coordinates

(wr) of A(m), all evaluated at the point py, 0.
More specifically, it follows from (4.8) that

1
gy = / T [ 591 log p)5' (95 10g ) 4, (5.25)
0
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where p = py,, 0 and

A 0
Orlog p = ——10g pm.w . (5.26)

aw[ w=0

We have the following relation
é[ 10gﬁ = (Xzs — mis) (th - mjt) (527)

for I = (i, 7, s,t) which can be calculated as shown below. It follows from (5.37) that

Ix _ _ _

<awijst>§ = flijst = Mysmj;  (when w = 0), (5.28)
ox B

<8mis>5 = his (5.29)

where (-)¢ means that the partial differentiations are those with respect to the coordi-

nate system & = (m,w). Note that d; in (5.27) for I = (i,7,s,1) is (8w(?jst)£ evaluated
at w = 0. Now, from equations (3.4) and (5.34), we obtain
log ﬁm,w = Z hkuXku + Z wklqukquv - 1/]
ku kluv
ku kluv
and 9k p
A ~ U X
01108 prmw = ( ’“) Xiw — M XiSX»—<—>. 5.31
e %:@wz (o =) + XanXie =5, ) (5:81)
Here,
ahku aQX .
= —(=— f t 5.29
(For)e = ~(Guompy),  Urom cauation (5:29)
= (e G
— \ Oy \NOwr e/ e
a S j .
= —?T:Jt (from equation (5.28))

= _6ik55umjt - 5jk5tumis'
Substituting this and (5.28) in (5.31), we have

é1 10g pmw = —(Xis — mus)mje — (Xje — mj)mus + Xis Xj0 — migmyy

= (Xis - miS)(th - mjt)a

which completes the derivation. As for the third-order coefficients hr;x in (5.24), we

first note that w = (wy) is an e-affine coordinate system of A(m) as mentioned before
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and hence F(If}) x = 0. As a consequence, we have

hrik = (919JK In;() J

= 2Re // Tr Y (9 log p) " (D log p)p* M log p) [dv d), (5.32)

0<r<i<1

where we have invoked (4.15) and (4.16).
If we succeed in obtaining explicit expressions for g;;, hyyx and if they are not

too complicated as functions of the mean variables m = (m;s), we can take

. 1
D (pm,ollonw) — B Z grywrwy
1J

or

D(pmollprw) — = Zguwle — _ZhIJKwIwaK
TIK

as a substitute of

D(ﬁm,prh,w) = D(ﬁm,OHPh,w) - D(ﬁm,OHﬁm,w) (5'33)

in equation (5.20) to improve the naive mean-field approximation (5.21).
Before closing this section, we verify the equivalence between our discussion and
the original formulation of Plefka for expansion of the Gibbs potential. Let us define

a function y : S — R by

x(p) = o) = D mis(o)his(0) (5.34)
= Slp) + Z tijst(P)wijst(p),  Vp € Sy (5.35)

where the second equality follows from (4.19) and ¢(p) = —S(p). Noting that equa-
tion (4.18) yields

- Z T]adea Zmlsdhw + Z ,uljstdwmsta (536)

1<J,8,t

we obtain from equation (5.34) that

dy = dy - medhzs stdmm

= Z ,uz]stdwmst Z hzsdmzs (537>

1<7J,8,t
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This shows that it is natural to represent x as a function of independent variables
(m,w) by X(pm.w), which corresponds to what is called the Gibbs potential in [Ple82,
Ple06]. Now, it is immediate from (4.26) and (5.34) that, for any (m, w) = (ms, Wijst),

X(ﬁm,w) = S(ﬁm,O) + Z mismjtwijst + D(ﬁm,ﬂl ﬁm,w)- (538)

1<J,8,t
This implies that the expansions of X(fm.w) and D(pm. ol pm.w) With respect to w are

equivalent except for Oth and first-order terms.

5.3 Some possible extensions

The present information geometrical formulation can be applied to models other
than the QBMs. For instance, an immediate application is to employ this method for
the mean-field approximation of higher-order QBMs. The higher-order QBMs (3.2)

can be represented as

p= eXP{Z his Xis + Z Z Wijst Xis Xje + Z Z VijkstuXisXjt Xy + 00 — w(ﬁ)}.

i<j st i<j<k s,t,u
(5.39)

Another important extension is to consider the ¢-state quantum spin model where
each element in the system has a Hilbert space C? and the whole system corresponds
to a Hilbert space (C?)®", where n is the number of elements. Obviously, we obtain
the present model for ¢ = 2. It would be useful to find many other applications of

this framework for quantum statistical models beyond the given two examples.



Chapter 6

Concluding remarks

6.1 Conclusions

In this thesis, we have found a possible quantum extension of the CBM and
investigated some properties from the information geometrical point of view. We

outline the conclusions of this work:

(1) A quantum extension of the CBM has been found which we call QBM. We have
also defined a restricted class of it called SSQBM.

(2) A state renewal rule for SSQBM has been proposed based on that for CBM.

The convergence of this state renewal rule is guaranteed by the Gibbs sampler.

(3) It has been shown that the totality of QBMs forms a quantum exponential
family. Moreover, the information geometrical structure of the space of QBMs

has also been discussed.
(4) The approximation process for QBMs has been studied.

(5) The geometrical structure of the totality of SSQBMs has been shown to be
equivalent to that of CBMs. The approximation process for SSQBM and the

estimation of parameters has also been studied in this framework.

(6) Mean-field approximation for QBMs has been studied from the information geo-
metrical point of view. Naive mean-field equation for QBMs has been explicitly

derived utilizing the concept of e-projection.

(7) Higher-order mean-field approximations based on the Plefka expansion have

also been discussed in this geometrical framework.

48
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6.2 Future work

We mention several open problems remaining for further research:

(1) To study the dynamical and neural aspects of QBMs including the computa-
tional capabilities. It may be interesting to apply such a model to optimization
problems (possibly from the point of view of adiabatic quantum computation

and quantum annealing).

(2) A more general study concerning the statistical and probabilistic aspects of

QBMs (as a special case of quantum Markov random field).
3) To investigate the deeper relations to quantum statistical mechanics.
g

(4) To establish the higher-order mean-field approximations explicitly and to study
higher-order QBMs.



Bibliography

[AKS9)

[AHS85]

[Ama85]

[Ama98]

[AISO1]

[AKN92]

[ANOO]

[BK0O]

(GG84]

[HKPO1]

E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines.
Wiley-Interscience, New York, 1989.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm
for Boltzmann machines. Cognitive Science vol. 9, 6, pp.147-169, 1985.

S. Amari. Differential-Geometrical Methods in Statistics. Lecture Notes
in Statistics 28, Springer-Verlag, 1985.

S. Amari. Natural gradient works efficiently in learning. Neural Compu-
tation 10, pp. 251-276, 1998.

S. Amari, S. Tkeda and H. Shimokawa. Information Geometry of mean

field approximation: a-divergence approach in [OS01], pp.241-257.

S. Amari, K. Kurata and H. Nagaoka. Information Geometry of Boltz-
mann Machines. IEEE Trans. on Neural Networks Vol 3, No. 2, pp.260—
271, 1992.

S. Amari and H. Nagaoka. Methods of Information Geometry. American
Mathematical Society and Oxford University Press, 2000.

C. Bhattacharyya and S. S. Keerthi. Information geometry and Plefka’s
mean-field theory. J.Phys. A: Math. Gen. 33, pp.1307-1312, 2000.

S. Geman, D. Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Trans. on Pattern Analysis €
Machine Intelligence PAMI-6, 6, pp.721-741, 1984.

J. Hertz, A. Krogh and R. G. Palmer. Introduction to the theory of
neural computation. Addison-Wesley Publishing Company, 1991.

20



BIBLIOGRAPHY 51

[JGJS99]

[KN63]

[0S01]

INC02]

[INK95]

INT97]

[PAST]

[Ple82]

[P1e06]

[Tan96]

[Tan00]

[TAPT7]

M. Jordan, Z. Ghahramani, T. S. Jakkola and L. Saul. An introduction
to variational methods for graphical models in Learning in Graphical
Models, Cambridge, MA: MIT Press, 1999, pp. 105-161.

S. Kobayashi and K. Nomizu. Foundations of Differential Geometry vol
1. Wiley-Interscience, New York, 1963.

Manfred Opper and David Saad. Advanced Mean Field Methods - Theory
and Practice, MIT Press, Cambridge, MA, 2001.

Michael A. Nielsen and Issac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, Cambridge, 2002.

H. Nagaoka and T. Kojima. Boltzmann Machine as a Statistical Model.
Bulletin of The Computational Statistics of Japan Vol.1, pp.61-81, 1995

(in Japanese).

K. Nakanishi and H. Takayama. Mean-field theory for a spin-glass model
of neural networks: TAP free energy and the paramagnetic to spin-glass
transition. J. Phys. A: Math. Gen. 30, pp. 8085-8094, 1997.

C. Peterson and J. Anderson. A mean-field theory learning algorithm

for neural networks. Complexr Systems 1, pp. 995-1019, 1987.

T. Plefka. Convergence condition of the TAP equation for the infinite-
ranged Ising spin glass model. J. Phys. A: Math. Gen. 15, pp.1971-1978,
1982.

T. Plefka. Expansion of the Gibbs potential for quantum many-body
systems: General formalism with applications to the spin glass and the
weakly non-ideal Bose gas. Phys. Rev. E 73, 016129, 2006.

T. Tanaka. Information Geometry of mean field Approximation. IFICE
Trans. Fundamentals E79-A 5, pp.709-715, 1996.

T. Tanaka, Information Geometry of mean field Approximation. Neural
Computation, 12 pp.1951-1968, 2000.

D. J. Thouless, P. W. Anderson and R. G. Palmer. Solution of a ‘Solvable
Model of a Spin Glass’. Phil. Mag. 35, pp.593-601, 1977.



BIBLIOGRAPHY 52

[YNO5] N. Yapage, H. Nagaoka. A Quantum Extension of Boltzmann machine:
An information geometrical viewpoint. Proc. of the ERATO Conference
on Quantum Information Science (EQIS’05), (Tokyo, Japan), pp.204—
205, 2005.

[YNOG] N. Yapage, H. Nagaoka. Information geometry of mean field approxima-
tion for quantum Boltzmann machines. Proc. of the Asian Conference
on Quantum Information Science (AQIS’06), (Beijing, China), pp.143—
144, 2006.

[YNOS] N. Yapage, H. Nagaoka. An information geometrical approach to the
mean-field approximation for quantum Ising spin models. J. Phys. A:
Math. Theor. 41 (2008) 065005.



Author Biography

Nihal Yapage was born in Galle, Sri Lanka. He received the B. Sc. (Special)
degree in Mathematics from the University of Ruhuna, Matara, Sri Lanka, in May
1998. Then he joined the Department of Mathematics of the same university as an
assistant teacher. He won a Japanese government (Monbukagakusho) scholarship in
2002 for postgraduate studies and now on study leave from the University of Ruhuna.
He received the M. Eng. degree in quantum information theory from the Graduate
School of Information Systems, University of Electro-Communications, Tokyo, Japan,
in March 2005. He has been with the same working towards the Ph.D. degree since
April 2005. Mr. Yapage is a student member of the American Physical Society.

23



List of Publications Related to the
Thesis

(1) N. Yapage, H. Nagaoka. A Quantum Extension of Boltzmann machine: An
information geometrical viewpoint. Proceedings of the ERATO Conference on
Quantum Information Science (EQIS’05), (Tokyo, Japan), pp.204-205, 2005.

(2) N. Yapage, H. Nagaoka. Information geometry of mean field approximation

for quantum Boltzmann machines. Proceedings of the Asian Conference on
Quantum Information Science (AQIS’06), (Beijing, China), pp.143-144, 2006.

(3) N. Yapage, H. Nagaoka. An information geometrical approach to the mean-field
approximation for quantum Ising spin models. J. Phys. A: Math. Theor. 41
(2008) 065005.

o4



