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Abstract.

Mean field theory(MFT), originated in statistical physics, has been widely used both in clas-

sical and quantum settings. In particular, mean field approximation(MFA) which is based on the MFT has
been extensively used for the classical Boltzmann machine(CBM) and also several authors have discussed
its properties in view of information geometry(IG). In this paper, we apply MFA to the quantum Boltz-
mann machine(QBM) and discuss its properties using the information geometrical concepts. The quantum
relative entropy as a quantum divergence function is used for approximation, where e-(exponential) and

m-(mixture) projections play an important role. We derive the naive mean field equations for QBMs from
the viewpoint of IG. Finally, we outline the formulation which leads to the higher-order MFAs.
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1 IG of MFA for CBMs

Let us consider a CBM (see [1]) where & =
(21, -+ ,Zn); x; = 1 denotes the values of n spin vari-
ables. The equilibrium distribution is given by

q =exp { th‘ﬂ?i + Zw,—,-xi:rj - w(q)}, 1)
i i<y
where 1(gq) is the normalization constant. Here, h;, wy;
are parameters and we assume w;; = wy; and wy = 0.
Let S be the manifold of CBMs of the form (1), where
(wij, hi) together form a coordinate system and specify
each distribution in S. Let E, be the expectation with
respect to ¢ € S. Then, the expectations 1,5 := Eg[ziz;]
and m; := E4[z;] jointly form another coordinate system
for S. We know that {m;} are related to {wij, h:} by
m; = ag’%l, but the partition function exp(y(q)) is diffi-
cult to calculate for a large system. Our objective is to
obtain a good approximation of m, for a given g € S.
Let M be the set of product distributions in & specified
by w;; =0, whose elements are written as

p=exp { > himi — w(p)}
1

This is a submanifold of S having h; as its coordinates.
The expectations m; := E,[z;] form another coordinate
system of M. For a given p € M, it is easy to obtain
m; = Ep[x;] because z;’s are independent. We can cal-
culate m; to be m; = Epz;] = tanh(ﬁ,-). The simple idea
behind the MFA for a g € S is to use quantities obtained
in the form of expectation with respect to some relevant
pE M. :

Let us now define the KL divergenceon S for g,p € S
as D(gllp) = T, q(@)logg(e) — logp(x)]. Given g =
q(,w,h) € S, its e- and m- projections. (see [5]) to M
are defined by

*(e) def inD d »(m) def . D
P arg min, (pllg) and p arg min (glip)
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respectively. While the m-projection of ¢ to M gives the

“true values of expectations, that is m; = m; or Eq [z:] =

E,lz;] for p = p*(™) the e-projection of q to M gives
the naive MFA ([3], [4]). It is well known that the naive
mean field equations for CBMs are given by

m; = tanh (Z wij My + hi)»
J
where m; = E,[z;] for p = p*®.

2 IG of MFA for QBMs

2.1 The manifold of QBMs and its submanifold
of product states

The equilibrium states of an n-element QBM defined
in {2] can be represented as

p = €Xp [Z hisois + Z Z WijstTis Tt — ¢(p)]. (2)

i,5 i<j s,
where g = I®01) @ g, @ I®™~% and ¥(p) is the
normalization éonstanp. Here, I is the identity matrix
and o, for s = x,y,2 being the Pauli matrices. Fur-
thermore, his, wijs: are parameters and we assume that
Wijst = Wyits and wiie = 0. )

Let S be the manifold of QBMs of the form (2), which
is a quantum exponential family (QEF) in the sense given
in [2], where (wijst, his) form a coordinate system to spec-
ify each QBM in S. The expectations 755 := Tr[p 01504
and m;s := Tr[po;s] form another coordinate system for
S. Our objective is to obtain a good approximation of
m;s for a given QBM p. .

Now consider the subset M of S such that w;;s; = 0.
Then M consists of all the product density operators of

the form B '
T = exp { Zhiaais - ’«/J(T)}, (3)

where $(r) = X, log {exp (IIhl) +exp (~I[Aull)} with
{|hil] := 4/3,(his)®. This is a submanifold of S speci-

fied by wije: = 0 and his as its coordinates. Moreover,
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it forms a QEF. The expectation coordinates of M are
related to {his} by

_ 1 d"/}('r) . st an 7.
Miy = ’I\r[TU‘LS]'_" 37113 - ”Ez” t h(Hh’tH) (4)
or hi, = H—ﬁ”;fﬂ tanh™ (| |m4l]). (5)

2.2 The ¢, m-projection and MFA

We introduce a quantum divergence function on S of
QBMs. The divergence in this case is considered to be
the quantum relative entropy from p € § to ¢ € S, which
is defined as D(p||0) Lf Tr[p(log p—logo)]. Now consider
the tangent space T (S) of S at 7. For V9 € T+ (S), we
have the relations

D(plir) = Tr{fr - p)dlog] (6)

and 9D(7||p) = Tr[(log T — log p)aT], (7

where ¢ operates on 7 as the partial differentiation.

If we take 7 to be the m-projection + =
argming e pq D(p||7’') of p to M, we have from (6),
dD(p||7) =0 (VO € T,(M)). That is

o
Ty
"

log 7] = Trfp

7] )
o log7] (Vi,Vs),
which implies that Tr[rois] = Tr{pois] or M = mis.
This means that if we use the m-projection the expecta-
tion values do not change. On the other hand, if we take
7 to be the e-projection 7 = argmin.epm D(7'{|p) of p
to M, we have from (7) dD(7|p) =0 (V0 € Tx(M)).
This leads to 0 = hy, — Z,s WiksrM4s — Rg Where we
define ;s := Tr{7r0;s]. Therefore we have

;"kr = hgr + Z"Uiksrm'is' (8)

]

Both (4) (or (5)) and (8) together give the naive mean
field equation for QBMs. This equation may have several
solutions {hy-} for a given set of {hxr, wiksr}-

3 Plefka expansion & higher-order MFAs

We brie(y outline the steps which lead to the higher-
order approximations using a Taylor expansion of the
quantum relative entropy. The formulation follows [4]
in the classical case. Let us consider the manifold S
of QBMs and its submanifold M of product states as
in the previous sections. For a given. QBM p € S, we
have its coordinates (wijst, his) and the dual coordinates
(nijst,mis). In addition to the potential function ¥(p)
given in (2), we introduce its dual by

df
= Z hismis +ZZ WijstTijst ~’(,b(/)) Trplogp

i<j 8.t
Now let us define two types of subsets of S as
F(w)={p | Wije¢ = constant Vi, j,s,t}

and
A(m) = {p | mys = constant Vi,s}k.

Note that {F(w)} and {A(m)}m form mutually dual
foliations of S (see [5]). Obviously, F(0) is the subman-
ifold M of product states. On each F(w), we can define
a pair of dual potentials ¢ =4 and ¢ = Y ois hismas — 9.
For any two density operators 7, p € F(w), the quantum
relative entropy of T and p can be expressed in terms of
the dual potentials ¢ and ¢ as

D(rllp) = é(r) + d(p Zh,s(p Mis,

where m;; = mys(7). Note that, since we have p =
arg min, ¢ r(w) D(7||p), the condition that %Q;D(T“p) =
0 or equivalently a—T‘Zi:(qE(T) — D5 his(p) mis) = 0 deter-
mines the expectations m;s for p, though this differenti-
ation is impossible when n is large. Here, we have

é(7) = ¢(m0) — Zzwijstmismjt +O(Jwl[*)
i<j s,t
or equivalently D(7]|p) = D(TQH‘B + O(]|w]|?), where 7o
is the unique element of F(0) N A(m) which is the m-
projection of 7 to F(0) = M. Then the differentiation
becomes tractable if we neglect the term O(||w||?), which
is nothing but the essence of naive MFA discussed in the
previous section. More precise approximations of {m,}
may be derived by considering the higher-order expansion

{(b(TO Z Z wt]stmismﬁ} ¢(T) D("'O"P) D(T”p)

i<j st

=3 Zg” To)w]uu+6 Z hryx( 'ro)w[waK+
1JK
(9)

where the indices I, J, K represent quadruplets of indices:
such as (i, 7,s,t). This is the idea due to Plefka [6},[7],
and we call (9) the Plefka expansion following {4]. Now,
applying the Pythagorean theorem for the mutually dual
foliations [5], we have D(7g||p)— D(7]lp) = D(7o||7), from
which it immediately follows that {gr;} are components
of the BKM-Fisher metric and that {hrsx} are repre-
sented in terms of the coefficients of e,m-connections
evaluated at 79. Finally, we note that MFAs have re-
cently been given for a quantum spin glass in [7] from a
viewpoint of statistical physics. Understanding this work
in our geometrical framework will be significant.
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