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Abstract. We extend the Classical Boltzmann Machine (CBM) to the quantum setting, which we call
the Quantum Boltzmann Machine (QBM), in the viewpoint of Gibbs sampler, exponential family and
information geometry. We also introduce a restricted class of the QBM called the Strongly Separable
Quantum Boltzmann Machine (SSQBM). The information geometrical structure of the SSQBM is shown

to be equivalent to that of the CB

. Moreover, the idea of Gibbs sampler is applied to the SSQBM to

yield a state renewal rule, for which the SSQBM is obtained as the equilibrium state.
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1 The classical Boltzmann machine

A CBM [1] is a neural net of n elements'1,2,---,n
where the value of each element ¢ € {1,2,---,n} is
xz; € {0,1}. Then a state of the CBM is given by
z = (21,22, ,&n) € {0,1}"*. The CBM has parame-
ters h; € R, the threshold for each element i and w;; € R
for each pair {i,j}, the weight between i and j. The
weights satisfy w;; = wj; and wi;; = 0. When the CBM
is in the state x, the input to the element ¢ is I;(&) =
Z}l:l wi;x; +hi, where & = (21, ,Ti1, i1y » Tn).
The state renewal rule @ — z’ of the CBM is

Prob{z; := 1} = 1/ [1 +exp(-Li(2)/T)], (1)

where T' € R is temperature. This state update of the
CBM is sequential. The equilibrium distribution is

P(e) = g oo (S has + Ywiaiay) /1], (@)

where Z is a normalization and, in the sequel, we assume
T = 1. Thus, we can identify each CBM with (2).

The (2) form an exponential (e-) family [2]. Let X
be an arbitrary finite set. In general, when a family of
distributions M = {P|0 = [#%]aca € R4} on X is as

Po(z) =explc(@) + 3 6% ful@) ~9(0)], ()

a€A

M is called an e- family. Then 6 = [9"] are called the

natural coordinates of M. If we let 7o (9) Eo[ fa] then
7 = [11o] and 8 = [#*] are in one-to-one. These [1,] are
called the erpectation coordinates of M.

Let P be the set of distributions P on the finite set
{0,1}" satisfying P(z) > 0. Note that P itself is an e-
family. For k € {1 -,n}, let Py be the set of distribu-
tions

= — exp [Z 0(1) T + Z 0(2)32137]- :

i<j

+ > 00,

1< <Ltk

--mik]. (4)
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Then Py is also an e- family. Thus, we have a hierarchi-
cal structure of e- families Py c Py C--- C P, =P.
From the viewpoint of IG [3], each Py is dually flat with
respect to the e- and mixture (m-) connections together
with the Fisher metric and, for ¢ < k, P, is an autopar-
allel submanifold of P, with respect to the e-connection.
Given an M C P of the form (3) and an arbitrary dis-
tribution @ € P outside M, consider the approximation
of Q by an element Py € M. We take the Kullback diver-
gence D(Q || o) &' 3= Q(x) log(Q(a) — Py(x)) as a cri-
terion of approximation. Our interest is to find € which
minimizes D(Q||Ps). Then, 6* = arg mainD(QHPo) iff

1a(0*) = Eg[fa], Va. An algorithm for computing this is
the gradient method in which a positive-definite symmet-
ric matrix [y*?(6)] € RA*4 is specified for each § € R4,
and a small constant € > 0 is given. Then, starting
from an arbitrary initial value, this process recurrently
updates € for sufliciently many times according to 6 :=
> + AG™ where AG* := —e 35 v (0){Eq[fs] — ns(6)}
until Py converges to Fy-.

2 The quantum Boltzmann machine

An n-element qua,ntu.m system corresponds to H =
(C?)®". Let S be the set of faithful states on H. Analo-
gous to (4), we introduce a set Sy C S of states

e

i<y s,t

+ Z Z eff) FAPIRET T LIT '?riksk]’ (5)

1< Tk 81

where ;s = I®(-D ®7r,5®I®("“i). Here, 7, = %(I+as),
I, the identity and o, for s = x,y, 2, the Pauli matrices.
Note that 7 is a projection corresponding to x; € {0, 1},
whereas the set S, is unchanged even if we replace 7, with
o5 in (5). We have the hierarchy 1 C S C--- C S, =
S. Now, corresponding to (2), we define the elements of
S to be the QBMs. Letting his = 91( ) and Wijst = Hgs)t,
a QBM can be represented by

= — exp [Z hismis + Z Z wzgstﬂ'wwjt} (6)

1<j st
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Let M = {pg} be a parametric family of faithful states

po=exp|[C+ Y 6°Fa —v(6)], (7)

a€A

where Fy, C are Hermitian and ¢(0) is a R-valued func-
tion. Here, though (7) is only one among the possible sev-
eral definitions, we call such an M a quantum e- family
(QEF) and 6 = [#°] its natural coordinates. The expec-
tation coordinates 1) = [1ja] of M are 14(f) = Tr[poFy].
It is easy to see that Sy is a QEF. An IG characterization
of (7) is given in the following theorem with respect to
the IG structure of S [3].

Theorem 1 S; is an autoparallel submanifold of S with
respect to the e-connection and is dually flat with re-
spect to (g, V(®, V(m)) which is the IG structure induced
from the quantum relative entropy D(p)||7) & Tr(plog p—
plogT). In particular, g is the BKM (Bogoliubov-Kubo-
Mori) Fisher information.

The approximation problem for QEF corresponding to
the classical case is described in the next theorem.

Theorem 2 Given 7 € S and a QEF (7), consider
11211D(T[|p9) where D is the quantum relative entropy.
Then, 6* = argmainD(THpg) iff 1.(0*) = Tr[TF,],Va.

The gradient algorithm for computing 6* is 8% = 0> +
AO> where AG* := — 3=, 7P (0){Tx[rFp] — ns(0)}.

3 The stroxfg/ly separable QBM

Separability is well-known in QIT. A state p € H is
called separable if there exists finite sets Xj,--- , Xy, a
distribution P on Xj x --- x X, and {'r,(') l x; € X} C
S8(C%),i=1,--- ,n, such that

p=> P@)T, ' (8)
where 7, = 71&) R ® rﬁﬁ).
Definition 3 A separable state (8) is strongly separable
(88) if [, 78 =0 Vi, xi,2} € X

This is equivalent to the existence of U = {u;}_,, where
each u; is a unit vector in R3, and a distribution P on
{0,1}" such that

p= Z P(xl’...’:L-n)ﬁ;"ll@..-@ﬂ::’ (9) '
1y 4T

where ¥ = 1(I + Dsmay,z UsTs) for u = (us) and 7§ =
I — n}*. Note that 7% = (7}, n§) represents the Stern-
Gerlach measurement of direction u. We callif = {u;} a
frame of a SS state p. Next theorem gives the necessary
and sufficient conditions for a state (5) to be SS.

Theorem 4 A state p represented ‘in the form (5)

in terms of the parameters [9§f,).-.,i,-sl,...,s,-] is SS

with frame U = {w;} iff Ei[Bl(f)',]] such that
ViV, < < Vg, Wy, sy, 00 L =
agf?f.‘,,tju,,-ls,,--- yUszs;, Where w; = (Uis)s—z,y,2-

Let us now define S’(/) as the set of SS states p€ S |
with frame U and S} (/) := §’(U) N Sk. Then, we have
natural diffeomorphisms S§'(U) ~ P and S;(U) ~ Px.
Next theorem describes the IG structure of S; (U).

Theorem 5 For an arbitrary frame U, S, (U) is a QEF
and therefore is autoparallel in'S with respect to the e-
connection. The induced IG structure (g, V(®, V(™) on
S;.(U) is dually flat and is equivalent to that of Py.

Now, we define the elements of the S5(U) to be the
SSQBMs. First, we give a corollary of Theorem 4.
Corollary 6 A QBM pg,8 = [his, wijst], (6) is SS with
frame U = {u;} iff 30" = [hi,wi;] such that Vi < j,Vs,t,

i 7
his - hi“isa Wijst = wij“is“jt; (10)

where w; = (Uis)s—n,y,z. In particular, if h; # 0,Vi, the
necessary and sufficient condition for a QBM pg to be
S8 (with some frame) is that Vi,j, W;; h,;h;!-, where
hi = [hia: hiy hiz]T, Wi = (wijst).s,t:z,y,z and T
denotes the transpose.

We apply the idea of Gibbs sampler [4] to construct a
state renewal process for the SSQBMs; which is given in
the next theorem.

Theorem 7 When the target state of a SSQBM is given
by (6) and (10), the state renewal is carried out by the fol-
lowing procedure, starting from an arbitrary initial state
p €S and data z € {0,1}".

(i) Choose i randomly.

(ii) Using data x, renew the state of the i-th element
to (I + 04)/2, where o, =3, V505 and v =

tanh((zj wi;T; + hg)/Z)ui.

(iii) Perform the measurement %t to the i-th element
and update x; in & by the measurement outcome.

s=x,y,z

Finally, we revisit the approximation problem of The-
orem 2 for SSQBMs in the following theorem.

Theorem 8 Given 7 € S, consider the problem of ap-
prozimating T by a SSQBM in S;(U) = {pe} where
U = {u;} is an arbitrarily fived frame. The approzi-
mation process to find 8* = arg mainD(THpg) is decom-
j crl = in D do =
posed into two parts: T = arg i c}g}?u) (t]|l&) an
arg IIgIID(TI [lpe). The second part turns out equivalent to
the approximation problem for the CBM by SL(U) ~ Ps.
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